Extraction and Identification of the Main Components of Cloves (Syzygium aromaticum L.) Oil Extract and its Antimicrobial Activity against Methicillin-resistant Staphylococcus aureus strain

Authors

  • Mays U. Hashim Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Green Qassim. Babylon, Iraq. https://orcid.org/0000-0001-6210-9800
  • Orooba M.S. Ibrahim Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq. https://orcid.org/0000-0002-0682-8621

DOI:

https://doi.org/10.32007/jfacmedbagdad.6622187

Keywords:

Antimicrobial, Caryophyllen, Clove extract, Staphylococcus aureus (MRSA), Time killing curve.

Abstract

Background: Methicillin-resistant Staphylococcus aureus is widely recognized as a significant etiological agent responsible for infections around the world. One of the biggest problems in world health care is antibiotic resistance to the MRSA strain. The use of herbal medicines is one of the promising techniques for countering bacterial resistance to antibiotics.

Objectives: The study is designed to investigate the chemical composition of clove oil extract and its in-vitro antibacterial activities against MRSA.

Methods: The clove oil extract was obtained by using hydro-distillation by Clevenger apparatus. After that, phytochemical analysis was done to determine the secondary metabolites by Chromatography-Mass Spectrometry. In-vitro antimicrobial activity of clove oil extract against Methicillin-resistant Staphylococcus aureus was carried out by agar well diffusion method, the broth microdilution method, and in-vitro time-kill curve kinetic. Least significant difference –LSD test (Analysis of Variation-ANOVA) was used to significant compare between means of results in this study.

Results: The results of this study revealed that the extraction percentage of the clove yielded 50%. The Chromatography-Mass Spectrometry results of the clove oil extract analysis showed that caryophyllen at 28.9%,  Humulene at 21.6% and eugenol at 13.06% were the primary bioactive ingredients of the prepared extract. Furthermore, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of clove oil extract against Methicillin-resistant Staphylococcus aureus were found to be 2.5μg/ml and 5.0 µg/ml respectively. Time killing curve of 2xMICs and 4xMICs of clove extract achieved the highest significant bactericidal effect (P0.05) in comparison to other concentrations.

Conclusions: The clove oil extract exhibited good in-vitro antibacterial properties and this can be attributed to the presence of phenolic compounds such as caryophyllene, humulene and eugenol.

Downloads

Download data is not yet available.

Author Biographies

  • Mays U. Hashim, Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Green Qassim. Babylon, Iraq.

    Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Green Qassim. Babylon, Iraq.

  • Orooba M.S. Ibrahim, Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq.

    Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq.

References

- Taati M, Khoshbayan A, Chegini Z, Farahani I, Shariati A. Bacteriophages, a new therapeutic solution for inhibiting multidrug-resistant bacteria causing wound infection: lesson from animal models and clinical trials. Drug design, development and therapy. 2020 May 15:1867-83. https://doi.org/10.2147/DDDT.S251171.

- Abdelraheem WM, Khairy RM, Zaki AI, Zaki SH. Effect of ZnO nanoparticles on methicillin, vancomycin, linezolid resistance and biofilm formation in Staphylococcus aureus isolates. Annals of Clinical Microbiology and Antimicrobials. 2021 Aug 21;20(1):54. https://Doi.org/10.1186/s12941-021-00459-2.

- Kanaan MH, AL-Shammary AH. Detection of methicillin or multidrug resistant Staphylococcus aureus (MRSA) in locally produced raw milk and soft cheese in Baghdad markets. The Iraqi Journal of Veterinary Medicine. 2013 Dec 31;37(2):226-31. https://doi.org/10.30539/ijvm.v37i2.1382

- Yassin MT, Al-Askar AA, Mostafa AA, El-Sheikh MA. Bioactivity of Syzygium aromaticum (L.) Merr. and LM Perry extracts as potential antimicrobial and anticancer agents. Journal of King Saud University-Science. 2020 Dec 1;32(8):3273-8. https://doi.org/10.1016/j.jksus.2020.09.009

- Sannathimmappa MB, Nambiar V, Aravindakshan R. Antibiotics at the crossroads–Do we have any therapeutic alternatives to control the emergence and spread of antimicrobial resistance?. Journal of Education and Health Promotion. 2021;10. https://doi.org/10.4103%2Fjehp.jehp_557_21

- Abdul-Jalil TZ. Evaluation of the active constituents, Antioxidant and Antimicrobial Activities of Iraqi Euonymus japonicus leaves using Ethyl Acetate Extract: Polyphenolic Characterization, Antioxidant and Antibacterial Activity of Iraqi Euonymus japonicus L. Ethyl Acetate Extract. Journal of the Faculty of Medicine Baghdad. 2023 Jul 1;65(2). https://doi.org/10.32007/jfacmedbagdad.1991

- Yazarlu O, Iranshahi M, Kashani HR, Reshadat S, Habtemariam S, Iranshahy M, Hasanpour M. Perspective on the application of medicinal plants and natural products in wound healing: A mechanistic review. Pharmacological research. 2021 Dec 1; 174:105841. https://doi.org/10.1016/j.phrs.2021.105841

- Mohd NA, Mohd MI, Manickam S, Sun X, Goh BH, Tang SY, Ismail N, Abdull Razis AF, Ch’ng SE, Chan KW. Essential oils and plant extracts for tropical fruits protection: From farm to table. Frontiers in Plant Science. 2022 Sep 29;13:999270. https://doi.org/10.3389/fpls.2022.999270

- Oliveira TA, Santiago MB, Santos VH, Silva EO, Martins CH, Crotti AE. Antibacterial activity of essential oils against oral pathogens. Chemistry & Biodiversity. 2022 Apr; 19(4):e202200097.

https://doi.org/10.1002/cbdv.202200097

- Haro-González JN, Castillo-Herrera GA, Martínez-Velázquez M, Espinosa-Andrews H. Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules. 2021 Oct 22;26(21):6387 https://doi.org/10.3390/molecules26216387

- Ali BM, Ibrahim O. Antifungal Activity of Clove (Syzygium aromaticum) Essential Oil Extract against Induced Topical Skin Infection by Candida albicans in Mice In-vivo. The Egyptian Journal of Hospital Medicine. 2023 Apr 1;91(1):3855-61. https://dx.doi.org/10.21608/ejhm.2023.293468

- Batiha GE, Beshbishy AM, Tayebwa DS, Shaheen HM, Yokoyama N, Igarashi I. Inhibitory effects of Syzygium aromaticum and Camellia sinensis methanolic extracts on the growth of Babesia and Theileria parasites. Ticks and tick-borne diseases. 2019 Aug 1;10(5):949-58. https://doi.org/10.1016/j.ttbdis.2019.04.016

- Kumar P V, Shams R, Singh R, Dar AH, Pandiselvam R, Rusu AV, Trif M. A comprehensive review on clove (Caryophyllus aromaticus L.) essential oil and its significance in the formulation of edible coatings for potential food applications. Frontiers in Nutrition. 2022 Sep 15; 9:987674. https://doi.org/10.3389/fnut.2022.987674

- Charoonratana T. Chapter 5 - Clove (Syzygium aromaticum). Clove (Syzygium Aromaticum). 2022 Jan 1:49-65. https://doi.org/10.1016/B978-0-323-85177-0.00001-X

- Mishra RP, Kalyani S. Antimicrobial activities of Syzigium aromaticum L.(Clove). Int Res JBiological Sci. 2014;3(8):22-5. Microsoft Word - 4.ISCA-IRJBS-2014-42

- Taraj K, Andoni A, Fatos YL, Ariana YL, Hoxha R, Llupa J, Malollari İ. Spectroscopic investigation of Syzygium aromaticum L. oil by water distillation extraction. Journal of International Environmental Application and Science. 2020; 15(2):122-6. https://dergipark.org.tr/en/pub/jieas/issue/54918/705980#article_cite

- Tambe E, Gotmare S. Qualitative estimation of chemical composition of five different clove oils (Syzygium aromaticum) by GCMS. International Journal of Multidisciplinary Educational Research. 2020;9(6):5.

https://www.researchgate.net/publication/344197071_qualitative_estimation_of_chemical_composition_of_five_different_clove_oils_syzygium_aromaticum_by_gcms

- Ibrahim OM, Saliem AH, Salih SI. Antibacterial activity of silver nanoparticles synthesized by Cinnamon zeylanicum bark extract against Staphylococcus aureus. Al-Anbar Journal of Veterinary Sciences. 2016;9(1):22-36. https://www.iasj.net/iasj/article/113248

- Shwaish MM, Ibrahim O. Pharmacodynamics analysis of meropenem against klebsiella pneumonia isolated from covid-19 patient. Biochemical & Cellular Archives. 2022 Apr 1;22(1). https://Pharmacodynamics+analysis+of+meropenem+against+klebsiella+pneumonia+isolated+from+covid-19+patient&btnG

- Salih AN, Ibrahim OM, Eesa MJ. Antibacterial activity of biosynthesized sliver nanoparticles against Pseudomonas aeruginosa In-vitro. The Iraqi Journal of Veterinary Medicine. 2017;41(1):60-5. https://doi.org/10.30539/iraqijvm.v41i1.81

- Mohammed SA, Ibrahim O. Pharmacodynamics analysis of fosfomycin against multidrugs resistant e. coli o157: h7 isolated from urinary tract infection. Biochemical & Cellular Archives. 2022 Apr 1; 22(1).

https://scholar.google.com/scholar?cluster=7016470094531529743&hl=ar&as_sdt=0,5

- Al-Mizraqchi AS. Anti-microbial activity of Green Tea Extracts and Nicotine on the Growth, Biofilm Formation of Sali-vary Mutans Streptococci (In-vitro study). Journal of the Faculty of Medicine Baghdad. 2023 Jul 1; 65(2(. https://doi.org/10.32007/jfacmedbagdad.2024

- Chiou WL. Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level-time curve. Journal of pharmacokinetics and biopharmaceutics. 1978 Dec; 6:539-46. https://doi.org/10.1007/bf01062108

- Jasim MA, Saeed OM. pharmacodynamic properties of meropenem against staphylococcus aureus. Biochemical & Cellular Archives. 2021 Apr 1;21(1) https://www.researchgate.net/publication/351230283_PHARMACODYNAMIC_PROPERTIES_OF_MEROPENEM_AGAINST_STAPHYLOCOCCUS_AUREUS

- Ishaq A, Syed QA, Khan MI, Zia MA. Characterizing and optimizing antioxidant and antimicrobial properties of clove extracts against food-borne pathogenic bacteria. International Food Research Journal. 2019 Jul 1;26(4):1165-72. http://www.ifrj.upm.edu.my/26%20(04)%202019/6%20-%20IFRJ181176.R1-Final.pdf

- Ratri PJ, Ayurini M, Khumaini K, Rohbiya A. Clove oil extraction by steam distillation and utilization of clove buds waste as potential candidate for eco-friendly packaging. Jurnal Bahan Alam Terbarukan. 2020 20; 9(1):47-54. https://doi.org/10.15294/jbat.v9i1.24935

- Selles SM, Kouidri M, Belhamiti BT, Ait Amrane A. Chemical composition, in-vitro antibacterial and antioxidant activities of Syzygium aromaticum essential oil. Journal of Food Measurement and Characterization. 2020 ;14(4):2352-8. https://doi.org/10.1007/s11694-020-00482-5

- Gonzalez-Rivera J, Duce C, Campanella B, Bernazzani L, Ferrari C, Tanzini E, Onor M, Longo I, Ruiz JC, Tinè MR, Bramanti E. In-situ microwave assisted extraction of clove buds to isolate essential oil, polyphenols, and lignocellulosic compounds. Industrial Crops and Products. 2021 = 1; 161:113203.https://doi.org/10.1016/j.indcrop.2020.113203

- Kumar PV, Shams R, Singh R, Dar AH, Pandiselvam R, Rusu AV, Trif M. A comprehensive review on clove (Caryophyllus aromaticus L.) essential oil and its significance in the formulation of edible coatings for potential food applications. Frontiers in Nutrition. 2022 = 15; 9:987674. https://doi.org/10.3389/fnut.2022.987674

- Gaspar EM, Duarte R, Santana JC. Volatile composition and antioxidant properties of clove products. Biomedical Journal of Scientific and Technical Research. 2018; 9(4):7270-6. http://dx.doi.org/10.26717/BJSTR.2018.09.001831

- Lee S, Najiah M, Wendy W, Nadirah M. Chemical composition and antimicrobial activity of the essential oil of Syzygium aromaticum flower bud (Clove) against fish systemic bacteria isolated from aquaculture sites. Frontiers of Agriculture in China. 2009; 3:332-6. https://doi.org/10.1007/s11703-009-0052-8

- Wongsawan K, Chaisri W, Tangtrongsup S, Mektrirat R. Bactericidal effect of clove oil against multidrug-resistant Streptococcus suis isolated from human patients and slaughtered pigs. Pathogens. 2019 21;9(1):14. https://doi.org/10.3390/pathogens9010014

- Alanazi AK, Alqasmi MH, Alrouji M, Kuriri FA, Almuhanna Y, Joseph B, Asad M. Antibacterial activity of syzygium aromaticum (clove) bud oil and its interaction with imipenem in controlling wound infections in rats caused by methicillin-resistant Staphylococcus aureus. Molecules. 2022 Dec 5;27(23):8551. https://doi.org/10.3390/molecules27238551

- Gürbüz M, Korkmaz Bİ. The anti-campylobacter activity of eugenol and its potential for poultry meat safety: A review. Food Chemistry. 2022 15; 394:133519. https://doi.org/10.1016/j.foodchem.2022.133519

- Jang HI, Rhee KJ, Eom YB. Antibacterial and antibiofilm effects of α-humulene against Bacteroides fragilis. Canadian Journal of Microbiology. 2020; 66(6):389-99. https://doi.org/10.1139/cjm-2020-0004

- Zhang X, Sun X, Wu J, Wu Y, Wang Y, Hu X, Wang X. Berberine damages the cell surface of methicillin-resistant Staphylococcus aureus. Frontiers in microbiology. 2020 28; 11:621. https://doi.org/10.3389/fmicb.2020.00621

- Mandal S, Mandal MD, Pal NK. Antibacterial potential of Azadirachta indica seed and Bacopa monniera leaf extracts against multidrug resistant Salmonella enterica serovar Typhi isolates. Archives of Medical Science. 2007 1; 3(1):14-8. https://www.termedia.pl/Original-paper-Antibacterial-potential-of-Azadirachta-indica-seed-and-Bacopa-monniera-leaf-extracts-against-multidrug-resistant-Salmonella-enterica-serovar-Typhi-isolates,19,7850,0,1.html

- Mandal S, DebMandal M, Saha K, Pal NK. In-vitro antibacterial activity of three Indian spices against methicillin-resistant Staphylococcus aureus. Oman Medical Journal. 2011; 26(5):319. https://doi.org/10.5001%2Fomj.2011.80

Antimicrobial, Caryophyllen, Clove extract, Staphylococcus aureus (MRSA), Time killing curve.

Downloads

Published

01.07.2024

How to Cite

1.
U. Hashim M, M.S. Ibrahim O. Extraction and Identification of the Main Components of Cloves (Syzygium aromaticum L.) Oil Extract and its Antimicrobial Activity against Methicillin-resistant Staphylococcus aureus strain. J Fac Med Baghdad [Internet]. 2024 Jul. 1 [cited 2024 Nov. 5];66(2):184-91. Available from: https://iqjmc.uobaghdad.edu.iq/index.php/19JFacMedBaghdad36/article/view/2187

Publication Dates

Received

2023-07-22

Revised

2023-09-17

Accepted

2024-01-28

Published Online First

2024-07-01

Similar Articles

1-10 of 218

You may also start an advanced similarity search for this article.