Serum CXCL 9 as a Potential Biomarker for Patients with Ulcerative Colitis
DOI:
https://doi.org/10.32007/jfacmedbagdad.6622277Keywords:
Inflammatory bowel disease (IBD), Ulcerative colitis (UC), T-Lymphocytes, Chronic inflammation, CXCL 9Abstract
Background: Ulcerative colitis (UC) is an inflammatory bowel disease restricted to the large intestine, characterized by superficial ulceration. It is a progressive and chronic disease requiring long-term treatment. Although its etiology remains unknown, it is suggested that environmental factors influence genetically susceptible individuals, leading to the onset of the disease. (C-X-C) ligand 9 is a chemokine that belongs to the CXC chemokine family, it plays a role in the differentiation of immune cells such as cytotoxic lymphocytes, natural killer T cells, and macrophages. Its interaction with its corresponding receptor CXCR3 which is expressed by a variety of cells such as effector T cells, CD8+ cytotoxic T cells, and macrophage, leads to stimulation of the production of IFN-γ and TNF-α and in turn, stimulates the production of Th1 chemokines which results in promoting the inflammation.
Objectives: To assess the significance of serum chemokine (C-X-C) ligand 9 as a potential marker for identifying ulcerative colitis in adults with inflammatory bowel disease.
Patients and Methods: This is a case-control study that included 50 patients diagnosed with UC, aged between 18 and 75 years, compared to 50 healthy controls, aged between 18 and 60 years. The study was conducted between November 2022 and March 2023, at the Gastroenterology and Hepatology Teaching Hospital at the Medical City Complex in Baghdad. The serum samples were analyzed using the Enzyme-Linked Immunosorbent Assay (ELISA) technique.
Results: The mean ± SD in pg/ml of serum CXCL9 in patient group was 26.9 ± 9.05 and in control group was 6.4 ± 2.37 (p< 0.0001) which indicates a highly significant difference.
Conclusion: CXCL 9 may be employed as a biomarker for identifying ulcerative colitis and it can be used as a tool for measuring disease activity, in addition to the possibility of being a potential therapeutic target.
Downloads
References
Alahmed A, Al-Rubaee E, H. Noon T. Human galectines and their contribution in the chronic colonic inflammation. Science Archives [Internet]. 2023 [cited 2023 Dec 6];04(02):141–6. Available from: http://sciencearchives.org/wp-content/uploads/2023/06/Science-Archives-2023-Vol.-4-2141-146-1.pdf
Attauabi M, Dahl EK, Burisch J, Gubatan J, Nielsen OH, Seidelin JB. Comparative onset of effect of biologics and small molecules in moderate-to-severe ulcerative colitis: a systematic review and network meta-analysis. EClinicalMedicine [Internet]. 2023 Mar;57:101866. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2589537023000433
Jebur NJ, J. Kadhim D, M. Firhan Nawal. Belief about Medications among Sample of Iraqi Patients with Inflammatory Bowel Disease. Iraqi Journal of Pharmaceutical Sciences ( P-ISSN: 1683 - 3597 , E-ISSN : 2521 - 3512) [Internet]. 2018 Dec 6;32–41. Available from: https://bijps.uobaghdad.edu.iq/index.php/bijps/article/view/862
Abdul-Hussein SS, Ali EN, Alkhalidi NMF, Zaki NH, Ad’hiah AH. Roles of il-17a and il-23 in the pathogenesis of ulcerative colitis and crohn’s disease. Iraqi Journal of Science [Internet]. 2021 Aug 31;62(8):2526–35. Available from: https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/3324
Ad’hiah AH, Hessan EB, Shahab BA. Interleukin-1 single nucleotide polymorphisms as risk factors for susceptibility of inflammatory bowel disease: an Iraqi Arab population-based study. Alexandria Journal of Medicine [Internet]. 2019 Jan 2;55(1):1–6. Available from: https://www.tandfonline.com/doi/full/10.1080/20905068.2019.1592938
Mohammed BI, Amin BK. Sociodemographic characteristics, smoking, and family history of patients with inflammatory bowel disease, northern part of Iraq. Med J Babylon [Internet]. 2022 Oct 1 [cited 2023 Nov 25];19(4):615–9. Available from: https://www.iasj.net/iasj/download/06a3e205e5fee2ec
Hassan J, Delmany A. Epidemiological and clinical characteristics of patients with inflammatory bowel disease in Erbil City. Medical Journal of Babylon [Internet]. 2018;15(4):281. Available from: http://www.medjbabylon.org/text.asp?2018/15/4/281/248045
Mohammed AS. Evaluation of Serum Vitamin D Level in Patients with Inflammatory Bowel Disease in Duhok Governorate. Med J Babylon [Internet]. 2019 [cited 2023 Nov 25];16(3):167–73. Available from: https://www.iasj.net/iasj/download/d21b81c5546223ae
Habanjar O, Bingula R, Decombat C, Diab-Assaf M, Caldefie-Chezet F, Delort L. Crosstalk of Inflammatory Cytokines within the Breast Tumor Microenvironment. Int J Mol Sci [Internet]. 2023 Feb 16;24(4):4002. Available from: https://www.mdpi.com/1422-0067/24/4/4002
Yongzhi X. COVID-19-associated cytokine storm syndrome and diagnostic principles: an old and new Issue. Emerg Microbes Infect [Internet]. 2021 Dec 1;10(1):266–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33522893
Kim J, Noh S, Park JA, Park SC, Park SJ, Lee JH, et al. Recent Advances in Aptasensor for Cytokine Detection: A Review. Sensors (Basel) [Internet]. 2021 Dec 20;21(24):8491. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34960590
Franzoni G, Pedrera M, Sánchez-Cordón PJ. African Swine Fever Virus Infection and Cytokine Response In Vivo: An Update. 2023; Available from: https://doi.org/10.3390/v15010233
de Zoeten EF, Fuss IJ. Cytokines and Inflammatory Bowel Disease. Pediatric Inflammatory Bowel Disease [Internet]. 2023 [cited 2023 Mar 5];33–48. Available from: https://link.springer.com/chapter/10.1007/978-3-031-14744-9_3
Tabassum S, Zafar M, Mirza MR, Choudhary MI, Haq I ul, Malik IR, et al. Association of Chemokine Genes CXCL9 and CXCL10 Polymorphisms with Tuberculosis in Pakistani Population. Pak J Zool [Internet]. 2022 Dec 1;54(6):2871–9. Available from: http://researcherslinks.com/current-issues/Association-Chemokine-Genes-CXCL-CXCL-Polymorphisms-with-Tuberculosis/20/1/5298/html
Dai H, Rachakonda SP, Penack O, Blau IW, Blau O, Radujkovic A, et al. Polymorphisms in CXCR3 ligands predict early CXCL9 recovery and severe chronic GVHD. Blood Cancer J [Internet]. 2021 Feb 27;11(2):42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33640906
Fallahi P, Ferrari SM, Ragusa F, Ruffilli I, Elia G, Paparo SR, et al. Th1 Chemokines in Autoimmune Endocrine Disorders. J Clin Endocrinol Metab [Internet]. 2020 Apr 1;105(4):1046–60. Available from: https://academic.oup.com/jcem/article/105/4/1046/5683662
Magnusen AF, Rani R, McKay MA, Hatton SL, Nyamajenjere TC, Magnusen DNA, et al. C-X-C Motif Chemokine Ligand 9 and Its CXCR3 Receptor Are the Salt and Pepper for T Cells Trafficking in a Mouse Model of Gaucher Disease. Int J Mol Sci [Internet]. 2021 Nov 24;22(23):12712. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34884512
Truelove SC, Witts LJ. Cortisone in ulcerative colitis. The BMJ [Internet]. 1955 Oct 29;2(4947):1041–8. Available from: https://doi.org/10.1136/bmj.2.4947.1041
Babakir-Mina M. Epidemiological and Clinical Aspects of Ulcerative Colitis in Mosul city, Iraq. Kurdistan Journal of Applied Research [Internet]. 2019 Aug 21;56–66. Available from: https://kjar.spu.edu.iq/index.php/kjar/article/view/317
Khalid Mohammed A, Al-Qadhi HI, Mehdi Alkhalidi N, Adnan Fawzi H, professor A. Effectiveness of Infliximab and Adalimumab in Iraqi patients with ulcerative colitis-Real-World Data [Internet]. 2020 Apr [cited 2023 Nov 25]. Available from: https://japer.in/storage/models/article/KXxjygMb0bFMWrK0vwPgN0AI97dPcvL5oOH1ugsx3yHQm3hZWFziJYxspFTI/effectiveness-of-infliximab-and-adalimumab-in-iraqi-patients-with-ulcerative-colitis-real-world-da.pdf
Pasvol TJ, Horsfall L, Bloom S, Segal AW, Sabin C, Field N, et al. Incidence and prevalence of inflammatory bowel disease in UK primary care: a population-based cohort study. BMJ Open [Internet]. 2020 Jul 19;10(7):e036584. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32690524
Alharbi OR, Azzam NA, Almalki AS, Almadi MA, Alswat KA, Sadaf N, et al. Clinical epidemiology of ulcerative colitis in Arabs based on the Montréal classification. World J Gastroenterol [Internet]. 2014 Dec 14;20(46):17525–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25516667
Abdul-Hussein SS, Ali EN, Zaki NH, Ad’hiah AH. Genetic polymorphism of HLA-G gene (G*01:03, G*01:04, and G*01:05N) in Iraqi patients with inflammatory bowel disease (ulcerative colitis and Crohn’s disease). Egyptian Journal of Medical Human Genetics [Internet]. 2021 Dec 26;22(1):34. Available from: 23. Abdul-Hussein SS, Ali EN, Zaki NH, Ad’hiah AH. Genetic polymorphism of HLA-G gene (G*01:03, G*01:04, and G*01:05N) in Iraqi patients with inflammatory bowel disease (ulcerative colitis and Crohn’s disease). Egyptian Journal of Medical Human Genetics [Internet]. 2021 Dec 26;22(1):34. Available from:
https://jmhg.springeropen.com/articles/10.1186/s43042-021-00158-9
Abdul-Hussein SS, Ali EN, Alkhalidi NMF, Zaki NH, Ad’hiah AH. Susceptibility role of soluble HLA-G and HLA-G 14-bp insertion/deletion polymorphism in inflammatory bowel disease. Egyptian Journal of Medical Human Genetics [Internet]. 2020 Dec 2;21(1):68. Available from: https://jmhg.springeropen.com/articles/10.1186/s43042-020-00104-1
Youness A, Miquel CH, Guéry JC. Escape from X Chromosome Inactivation and the Female Predominance in Autoimmune Diseases. Int J Mol Sci [Internet]. 2021 Jan 23;22(3):1114. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33498655
Al-Khazraji KA. Descriptive study of Extragastrointestinal Manifestations of Ulcerative Colitis and their relation to disease activity in 100 Iraqi patients [Internet]. Vol. 24, J Fac Med Baghdad. Baghdad; 2011 Jan [cited 2023 Sep 18] p. 24–8. Available from: https://iqjmc.uobaghdad.edu.iq/index.php/19JFacMedBaghdad36/article/view/903/672
Singh UP, Singh NP, Murphy EA, Price RL, Fayad R, Nagarkatti M, et al. Chemokine and cytokine levels in inflammatory bowel disease patients. Cytokine [Internet]. 2016 Jan 1;77:44–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26520877
Elia G, Guglielmi G. CXCL9 chemokine in ulcerative colitis. Clin Ter [Internet]. 2018;169(5):e235–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30393811
Atreya R, Neurath MF. Chemokines in Inflammatory Bowel Diseases. Digestive Diseases [Internet]. 2010 Oct [cited 2023 Nov 25];28(3):386–94. Available from: https://www.karger.com/Article/FullText/320392
Andersson E, Bergemalm D, Kruse R, Neumann G, D’Amato M, Repsilber D, et al. Subphenotypes of inflammatory bowel disease are characterized by specific serum protein profiles. Karhausen J, editor. PLoS One [Internet]. 2017 Oct 5;12(10):e0186142. Available from: https://dx.plos.org/10.1371/journal.pone.0186142
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 Mohammed A. Qusay, Sarmad M.H. Zeiny, Haider J.M. Al-Maraashi
This work is licensed under a Creative Commons Attribution 4.0 International License.