تأثير لقاح كوفيد -19 على بعض المؤشرات الحيوية اللعابية المناعية sIgA) وانترلوكين 17(
DOI:
https://doi.org/10.32007/jfacmedbagdad.2039الكلمات المفتاحية:
سارس -كوفيد -2، كوفيد-19، التطعيم فايزر (BNT162b2)، الإفرازي (sIgA)، IL-17الملخص
الخلفية: التطعيم الأكثر استخدامًا ضد فيروس كورونا المرتبط بالسارس (SARS-CoV-2) هو لقاح فايزر ، الذي يوفر الحماية من هذا الفيروس. ومع ذلك ، فإن قدرته على حماية تجويف الفم غير واضحة ، ولا مستويات المؤشرات الحيوية المناعية الدقيقة التي ينشطها.
الأهداف: الكشف عما إذا كان التطعيم بلقاح فايزر يحمي تجويف الفم أم لا.
المرضى والطرق: تكونت مجموعة الدراسة من إجمالي 70 شخصًا (30 كمجموعة ضابطة تمت متابعتهم قبل التطعيم على أنهم غير ملقحين (ربما مصابين سابقًا أو غير مصابين أو تعافوا) ومتابعة 40 مشاركًا بعد ثلاثة أسابيع الجرعة الأولى وبعد أسبوع من التطعيم الثاني. تم جمع عينات اللعاب من أفراد مجموعة الدراسة في مستشفى المدينة الطبية في بغداد من سبتمبر 2021 إلى يوليو 2022. تم الكشف عن المؤشرات الحيوية اللعابية sIgA و IL-17 بواسطة الإنزيم المرتبط أطقم مقايسة الممتز المناعي (ELISA).
النتائج: أظهرت مستويات إفراز IgA فرقًا معنويًا (P> 0.05) في مجموعة المتابعة بعد التطعيم الأول مقارنة بالمجموعة غير الملقحة (مجموعة الضوابط). ومع ذلك ، وجد اختلاف غير معنوي في مستواه في مجموعة المتابعة بعد التطعيم الأول مقارنة بعد التطعيم الثاني. على عكس الضوابط الصحية ، كان لدى المشاركين غير الملقحين مستويات أعلى من IL-17 اللعابية. لم تتغير مستويات IL-17 للمشاركين المتابعين بشكل ملحوظ بعد اللقاحين الأول والثاني (P> 0.05).
الخلاصة: لقاح فايزر له تأثير طفيف على sIgA لأن لقاحات mRNA توفر حماية جهازية أكثر من الحماية اللعابية. ومع ذلك ، فإن لقاح فايزر يرفع مستويات IL-17 بعد الجرعتين الأولى والثانية دون التسبب في متلازمة السيتوكين.
التنزيلات
المراجع
Nejabi M, Noor N, Raufi N, Essar M, Ehsan E, Shah J, et al. Tongue ulcer in a patient with COVID-19: a case presentation. BMC Oral Health 2021;21:1-5. https://doi.org/10.1186/s12903-021-01635-8
Farook FF, Nuzaim MNM, Ababneh KT, Alshammari A & Alkadi L. COVID-19 pandemic: Oral health challenges and recommendations European journal of dentistry. 2020; 14(S 01), S165-S170. https://doi.org/10.1055/s-0040-1718641
Sauer K, & Harris T. An effective COVID-19 vaccine needs to engage T cells Frontiers in Immunology. 2020; 2371.
https://doi.org/10.3389/fimmu.2020.581807
Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB & Prado EO. SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates npj Vaccines. 2021; 6(1), 1-17. https://doi.org/10.1038/s41541-021-00292-w
Pantaleo G, Correia B, Fenwick C, Joo VS, Perez L. Antibodies to combat viral infections: development strategies and progress Nature Reviews Drug Discovery. 2022; 21(9), 676-696ز https://doi.org/10.1038/s41573-022-00495-3
Al-Atrooshi BA, Al-Rawi AS. 2007. Oral halitosis and oral hygiene practices among dental students. Journal of Baghdad college of dentistry; 19(1), 72-76.
Rashad S, El-Chaghaby G. Algae Bioactive Constituents and Possible Role During COVID-19 Pandemic (A review) Iraqi Journal of Pharmaceutical Sciences (P-ISSN: 1683-3597, E-ISSN: 2521-3512). 2021; 30(2), 16-22 https://doiorg/1031351/vol30iss2pp16-22.
https://doi.org/10.31351/vol30iss2pp16-22
Khamees SI & Mohammad AN. Evaluation of inorganic ions and enzymes levels in saliva of patients with chronic periodontitis and healthy subjects. Therapy. 2012; 6, 7.
Khanday AMUD, Khan QR, Rabani ST. Ensemble Approach for Detecting COVID-19 Propaganda on Online Social Networks Iraqi Journal of Science. 2022; 63(10), 4488-4498 https://doiorg/1024996/ijs2022631033. https://doi.org/10.24996/ijs.2022.63.10.33
Al-Azzawi AKJ and Al-Zubaidi, AK. 2014. The effect of various endodontic irrigants on the sealing ability of biodentine and other root perforation repair materials: in vitro study. J. Baghdad Coll. Dent; 26, 1-8. https://doi.org/10.12816/0015217
Adham ZS, & Al-Ghurabi BH. Prevalence of viral co-infection among COVID-19 cases in association disease severity and oral hygiene Journal of Baghdad College of Dentistry. 2021; 33(3), 1-8https://doiorg/1026477/jbcdv33i32947.
https://doi.org/10.26477/jbcd.v33i3.2947
Matuchansky C. Mucosal immunity to SARS-CoV-2: a clinically relevant key to deciphering natural and vaccine-induced defences Clinical Microbiology and Infection, 2021; 27(12), 1724-1726. https://doi.org/10.1016/j.cmi.2021.08.008
Isaza-Guzmán DM, Cardona-Vélez N, Gaviria-Correa DE, Martínez-Pabón MC, Castaño-Granada MC, Tobón-Arroyave SI. Association study between salivary levels of interferon (IFN)-gamma, interleukin (IL)-17, IL-21, and IL-22 with chronic periodontitis Archives of oral biology. 2015; 60(1), 91-99. https://doi.org/10.1016/j.archoralbio.2014.09.002
Mills KH. IL-17 and IL-17-producing cells in protection versus pathology Nature Reviews Immunology. 2022; 1-17.
https://doi.org/10.1038/s41577-022-00746-9ز 15. Shibabaw T. Inflammatory cytokine: IL-17A signaling pathway in patients present with COVID-19 and current treatment strategy Journal of inflammation research. 2020; 13, 673. https://doi.org/10.2147/JIR.S278335
Kareem HH, Al-Ghurabi BH, Albadri C. Molecular Detection of Porphyromonas gingivalis in COVID-19 Patients Journal of Baghdad College of Dentistry. 2022; 34(2), 52-61. https://doi.org/10.26477/jbcd.v34i2.3145
Kar S, Devnath P, Emran TB, Tallei TE, Mitra S, Dhama K. Oral and intranasal vaccines against SARS‐CoV‐2: Current progress, prospects, advantages, and challenges Immunity, Inflammation and Disease. 2022; 10(4), e604.
https://doi.org/10.1002/iid3.604
Hassan RT, Mohammed SH.. Evaluation of immunoglobulin G level among subjects vaccinated with different types of COVID-19 vaccines in the karbala population, Iraq. Biomedical and Biotechnology Research Journal (BBRJ,2022; 6(3), 466.
https://doi.org/10.4103/bbrj.bbrj_213_22
Tu MK, Chiang SH, Bender RA, Wong DT, Strom CM. The kinetics of COVID-19 vaccine response in a community-vaccinated population The Journal of Immunology. 2022; 208(4), 819-826. https://doi.org/10.4049/jimmunol.2100919
Al-dulaimi AA, Al-Issa YA. Comparison between the Impact of Pfizer Vaccination and Covid-19 Infection on Human Creatine Kinase Activity and its Isoenzymes. The Egyptian Journal of Hospital Medicine, 2023; 90(1), 1923-1927.
https://doi.org/10.21608/ejhm.2023.284763
Tsukinoki K, Yamamoto T, Handa K, Iwamiya M, Saruta J, Ino S, et al. Detection of cross-reactive immunoglobulin A against the severe acute respiratory syndrome-coronavirus-2 spike 1 subunit in saliva PloS one. 2021; 16(11), e0249979.
https://doi.org/10.1371/journal.pone.0249979
Rasheed AM, Fatak DF, Hashim HA, Maulood M F, Kabah KK, Almusawi Y. A., Abdulamir A S. The therapeutic potential of convalescent plasma therapy on treating critically-ill COVID-19 patients residing in respiratory care units in hospitals in Baghdad, Iraq. Infez Med, 2020; 28(3), 357-366. https://doi.org/10.1101/2020.06.24.20121905
Estadilla CDS, Uyheng J, de Lara-Tuprio EP, Teng TR, Macalalag JMR, Estuar MRJE. Impact of vaccine supplies and delays on optimal control of the COVID-19 pandemic: mapping interventions for the Philippines Infectious Diseases of Poverty. 2021; 10(04), 46-59.
https://doi.org/10.1186/s40249-021-00886-5
Chan L, Chaudhary K, Saha A, Chauhan K, Vaid A, Zhao S, et al. AKI in hospitalized patients with COVID-19 Journal of the American Society of Nephrology. 2021; 32(1), 151-160.
Jensen A, Stromme M, Moyassari S, Chadha AS, Tartaglia MC, Szoeke C, et al. COVID-19 vaccines: Considering sex differences in efficacy and safety Contemporary Clinical Trials. 2022; 106700. https://doi.org/10.1016/j.cct.2022.106700
Mahmood Z S, Fadhil HY., Ad AH. Estimation of hematological parameters of disease severity in Iraqi patients with COVID-19. Iraqi Journal of Science, 2021; 3487-3496. https://doi.org/10.24996/ijs.2021.62.10.8
Darwich A, Pozzi C, Fornasa G, Lizier M, Azzolini E, Spadoni I, et al. BNT162b2 vaccine induces antibody release in saliva: a possible role for mucosal viral protection? EMBO molecular medicine. 2022; 14(5), e15326. https://doi.org/10.15252/emmm.202115326
Sheikh-Mohamed S, Isho B, Chao GY, Zuo M, Cohen C, Lustig Y, et al. Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are associated with protection against subsequent infection Mucosal immunology. 2022; 1-10. https://doi.org/10.1038/s41385-022-00511-0
Mohamed SS, Chao GY, Isho B, Zuo M, Nahass GR, Salomon-Shulman R E, et al. A mucosal antibody response is induced by intra-muscular SARS-CoV-2 mRNA vaccination medRxiv. 2021.
Sano, K., Bhavsar, D., Singh, G., Floda, D., Srivastava, K., Gleason, C., ... & Krammer, F. (2022). SARS-CoV-2 vaccination induces mucosal antibody responses in previously infected individuals. Nature Communications. 13(1); 5135.
https://doi.org/10.1038/s41467-022-32389-8
Sundar S, Ramadoss, R., Shanmugham, R, Ananda padmanabhan LT, Paneerselvam S, Ramani P & Karobari MI. 2022. Salivary Antibody Response of COVID-19 in Vaccinated and Unvaccinated Young Adult Populations. Vaccines. 10(11); 1819.
https://doi.org/10.3390/vaccines10111819
Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China Clinical immunology. 2020; 214, 108393.
https://doi.org/10.1016/j.clim.2020.108393
Ong SWX, Fong SW, Young BE, Chan YH, Lee B, Amrun SN, et al. (2021, June) Persistent symptoms and association with inflammatory cytokine signatures in recovered coronavirus disease 2019 patients In Open forum infectious diseases. 2021; (Vol 8, No 6, p ofab156) US: Oxford University Press. https://doi.org/10.1093/ofid/ofab156
Bolles M, Deming D, Long K, Agnihothram S, Whitmore A, Ferris M, et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge Journal of virology. 2011, 85(23), 12201-12215. https://doi.org/10.1128/JVI.06048-11
Kimura A & Kishimoto T. IL‐6: regulator of Treg/Th17 balance European journal of immunology. 2010; 40(7), 1830-1835
https://doi.org/10.1002/eji.201040391
Rokni M, Hamblin MR, Rezaei N. Cytokines and COVID-19: friends or foes? Human vaccines & immunotherapeutics. 2020; 16(10), 2363-2365. https://doi.org/10.1080/21645515.2020.1799669
Jin W & Dong C. IL-17 cytokines in immunity and inflammation Emerging microbes & infections. 2013; 2(1), 1-5.
https://doi.org/10.1038/emi.2013.58
Martonik D, Parfieniuk-Kowerda A, Rogalska M, Flisiak R. The role of Th17 response in COVID-19 Cells. 2021; 10(6), 1550.
https://doi.org/10.3390/cells10061550
Lin Y, Slight SR, & Khader SA (2010, March) Th17 cytokines and vaccine-induced immunity In Seminars in immunopathology (Vol 32, No 1, pp 79-90) Springer-Verlagز https://doi.org/10.1007/s00281-009-0191-2
Merino KM, Jazwinski SM, Rout N. Th17-type immunity and inflammation of aging Aging (Albany NY). 2021; 13(10), 13378.
التنزيلات
منشور
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2023 Dhuha Ali, Ghada Taha
هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial 4.0 International License.