Correlation between MDA Level and Chitotriosidase-1 Activity in Seminal Fluid of Iraqi Infertile Males

Authors

DOI:

https://doi.org/10.32007/jfacmedbaghdad.6642395

Keywords:

Chitotriosidase-1, Male infertility, Malondialdehyde, Seminal plasma, Sperm quality

Abstract

Background: Male infertility is a multifactorial condition influenced by various physiological and biochemical factors. Seminal fluid composition plays a crucial role in sperm function and fertilization potential. Chitotriosidase is a chitinase enzyme released by activated macrophages and is highly conserved and controlled. The notable chitinase in humans plays a significant role in the body's immunological response and is linked to inflammation, infection, tissue damage, and remodeling processes. On the other hand, malondialdehyde is a marker of lipid peroxidation, reflecting oxidative stress levels.

Objective: This study aimed to explore the correlation between malondialdehyde levels and Chitotriosidase-1in seminal fluid in Iraqi infertile males.

Methods: Ninety males aged between twenty and forty-five were included in this cross-sectional study, all diagnosed with infertility by specialists at the infertility unit of Al-Batool Teaching Hospital between February 2022 and February 2023. The participants were categorized into three groups: the Normozoospermic Group (G1), the Asthenospermia Group (G2), and the Oligozoospermic Group (G3). Seminal malondialdehyde and Chitotriosidase-1 levels were measured by competitive Enzyme-linked immunosorbent assay.

Results: The study findings showed significantly higher levels of seminal fluid Chitotriosidase-1 found in the G2 group compared to the G3 and G1 groups. The seminal fluid malondialdehyde level for G1 was significantly lower than those for G2 and G3, which revealed a significant positive correlation between seminal fluid Chitotriosidase-1 activity and malondialdehyde levels (r = 0.37, P < 0.05) in the Asthenospermia Group.

Conclusion: There is a correlation between seminal fluid Chitotriosidase-1 activity and malondialdehyde level in the Asthenospermia Group. Novel diagnostic and therapeutic approaches for the treatment of male infertility may result from our growing understanding of the roles played by Chitotriosidase-1 and malondialdehyde in male reproductive health.

Downloads

Download data is not yet available.

References

1. Al-Khateeb S, Hussein SM, Dahy AAAI. Evaluation of inhibin-B hormone, FSH, and Testosterone in serum of infertile men. J Fac Med Baghdad . 2016 Jul 3 ;58(2):180–2. https://doi.org/10.32007/jfacmedbagdad.5822377.

2. Lazem AA, Al-Kaseer E, Al-Diwan JK, Al- Hadithi TS. Effect of infection on semen parameters in a sample of Iraqi infertile males. J Fac Med Baghdad. 2010;52(3):274–6. https://doi.org/10.32007/jfacmedbagdad.523973.

3. Kratz EM, Zurawska-Plaksej E, Solkiewicz K, Kokot I, Faundez R, Piwowar A. Investigation of seminal plasma chitotriosidase-1 and leukocyte elastase as potential markers for “silent” inflammation of the reproductive tract of the infertile male - a pilot study. J Physiol Pharmacol . 2020;71(3):1–7. https://doi.org/10.26402/jpp.2020.3.04.

4. Di Francesco AM, Verrecchia E, Manna S, Urbani A, Manna R. The chitinases as biomarkers in immune-mediate diseases. Clin Chem Lab Med . 2022 Jul 1;61(8):1363–81. https://doi.org/10.1515/cclm-2022-0767.

5. Toto A, Wild P, Graille M, Turcu V, Crézé C, Hemmendinger M, et al. Urinary Malondialdehyde (MDA) Concentrations in the General Population-A Systematic Literature Review and Meta-Analysis. Toxics . 2022 Apr 1;10(4). https://doi.org/10.3390%2Ftoxics10040160

6. Morselli S, Sebastianelli A, Liaci A, Zaccaro C, Pecoraro A, Nicoletti R, et al. Male reproductive system inflammation after healing from coronavirus disease 2019. Andrology . 2022 Sep 1;10(6):1030–7. https://doi.org/10.1111/andr.13138.

7. Al-Darawsha, T. Z., Dayioglu, N., Al-Azzawi, B. R., & Irez, T. Study a relationship between age, body mass index, and sperm parameters with sperm DNA fragmentation levels in Iraqi infertile patients. Al-Ameed Journal for Medical Research and Health Sciences, 2023;1(2), 3.‏ http://dx.doi.org/10.61631/3005-3188.1007.

8. Salman, F. S., Al-Qadhi, H. I., & Al Kareem, B. A. N-acetyl cysteine’s effect on semen parameters in a sample of Iraqi men with oligoasthenoteratozoospermia. JFacMed Baghdad, 2022; 64(3), 170-174. https://doi.org/10.32007/jfacmedbagdad.6431938.

9. Fink, J., & Horie, S. The Multiple Health Benefits of Testosterone. Cambridge Scholars Publishing,2022. https://www.cambridgescholars.com/product/978-1-5275-7637-

10. Elfateh, F., Wang, R., Zhang, Z., Jiang, Y., Chen, S., & Liu, R. Influence of genetic abnormalities on semen quality and male fertility: A four-year prospective study. Iranian Journal of Reproductive Medicine,2014; 12(2), 95.‏ http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4009560.

11. Murgia, F., Corda, V., Serrenti, M., Usai, V., Santoru, M. L., Hurt, K. J. & Monni, G. Seminal fluid metabolomic markers of oligozoospermic infertility in humans. Metabolites,2020; 10(2), 64.‏ https://doi.org/10.3390%2Fmetabo10020064.12. Haugen, T. B., Witczak, O., Hicks, S. A., Björndahl, L., Andersen, J. M., & Riegler, M. A. Sperm motility assessed by deep convolutional neural networks into WHO categories. Scientific Reports,2023; 13(1), 14777.‏ https://doi.org/10.1038/s41598-023-41871-2.

13. Lu, H., Xu, D., Zhao, L., Ruan, H., Wang, A., Hu, J.& Lu, W. Exploring the regulatory role of Linc00893 in asthenozoospermia: Insights into sperm motility and SSC viability. Molecular Medicine Reports,2024; 29(2), 1-12.‏ https://doi.org/10.3892/mmr.2023.13143

14. Diyasa IGSM, Saputra WSJ, Gunawan AAN, Herawati D, Munir S, Humairah S. Abnormality Determination of Spermatozoa Motility Using Gaussian Mixture Model and Matching-based Algorithm. J Robot Control [Internet]. 2024 Jan 12 [cited 2024 Sep 3];5(1):103–16. Available from: https://journal.umy.ac.id/index.php/jrc/article/view/20686

15. Dcunha R, Hussein RS, Ananda H, Kumari S, Adiga SK, Kannan N, Zhao Y, Kalthur G. Current Insights and Latest Updates in Sperm Motility and Associated Applications in Assisted Reproduction. Reprod Sci. 2022 Jan;29(1):7-25. https://doi.org/10.1007%2Fs43032-020-00408-y

16. Schlegel, P. N., Sigman, M., Collura, B., De Jonge, C. J., Eisenberg, M. L., Lamb, D. J., ... & Zini, A. Diagnosis and treatment of infertility in men: AUA/ASRM guideline part I. The Journal of urology,2021; 205(1), 36-43.‏ https://doi.org/10.1097/ju.0000000000001521

17. Pereira, P. P. D. S., Da Mata, F. A., Figueiredo, A. C. G., de Andrade, K. R. C., & Pereira, M. G.Maternal active smoking during pregnancy and low birth weight in the Americas: a systematic review and meta-analysis. Nicotine & tobacco research,2017; 19(5), 497-505.‏ https://doi.org/10.1093/ntr/ntw228

18. Zanetti, B. F., Braga, D. P. A. F., Provenza, R. R., Figueira, R. C. S., Iaconelli Jr, A., & Borges Jr, E. Sperm morphological normality under high magnification is correlated to male infertility and predicts embryo development. Andrology,2018; 6(3), 420-427.‏ https://doi.org/10.1111/andr.12473

19. Hasan FS. Seminal Fluid Abnormality among Infertile Males: A Two-Center Based Study in Baghdad. Iraqi Postgrad Med J [Internet]. 2020 [cited 2024 Aug 30];19(2). Available from: https://www.iasj.net/iasj/article/186077

20. Hassan ZM, Hamdi RA, Bassam EN Al. Evaluation of the Role of Serum Malondialdehyde in the Pathogenesis of Diabetic Retinopathy. J Fac Med Baghdad [Internet]. 2022 Oct 17 [cited 2024 Aug 30];64(3):195–8. Available from: http://dx.doi.org/10.32007/jfacmedbagdad.6431957

21. Kodali ST, Kauffman P, Kotha SR, Yenigalla A, Veeraraghavan R, Pannu SR, et al. Oxidative Lipidomics: Analysis of Oxidized Lipids and Lipid Peroxidation in Biological Systems with Relevance to Health and Disease. 2020 Aug 9;61–92. Available from: https://www.ncbi.nlm.nih.gov/books/NBK566435/

22. Jasem KM, Alnasrawi TH, Shiblawi HH, Wahid HHA, Al-Saadi NH. Investigation of malondialdehyde and some elements in young infertile males. Res J Pharm Technol. 2021 Oct 1;14(10):5418–22. http://dx.doi.org/10.52711/0974-360X.2021.00944

23. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules [Internet]. 2019 Apr 22 [cited 2024 Aug 30];24(8). Available from: https://pubmed.ncbi.nlm.nih.gov/31013638/

24. Kurkowska W, Bogacz A, Janiszewska M, Gabryś E, Tiszler M, Bellanti F, et al. Oxidative Stress is Associated with Reduced Sperm Motility in Normal Semen. Am J Mens Health [Internet]. 2020 Sep 1 [cited 2024 Aug 30];14(5). Available from: https://pubmed.ncbi.nlm.nih.gov/32938274/

25. Bergsma AT, Li HT, Eliveld J, Bulthuis MLC, Hoek A, van Goor H, et al. Local and Systemic Oxidative Stress Biomarkers for Male Infertility: The ORION Study. Antioxidants [Internet]. 2022 Jun 1 [cited 2024 Aug 30];11(6). https://doi.org/10.3390/antiox11061045.

26. Hasan H, Bhushan S, Fijak M, Meinhardt A. Mechanism of Inflammatory Associated Impairment of Sperm Function, Spermatogenesis and Steroidogenesis. Front Endocrinol (Lausanne). 2022 Apr 28;13:897029. https://doi.org/10.3389/fendo.2022.897029.

human seminal fluid, chitotriosidase-1, silent inflammation, Malondialdehyde (MDA), lipid peroxidation

Downloads

Published

31.12.2024

How to Cite

1.
Abdul Aziz AS, Elyaseen HD, Kadhem HK. Correlation between MDA Level and Chitotriosidase-1 Activity in Seminal Fluid of Iraqi Infertile Males. J Fac Med Baghdad [Internet]. 2024 Dec. 31 [cited 2025 Jan. 8];66(4):479-86. Available from: https://iqjmc.uobaghdad.edu.iq/index.php/19JFacMedBaghdad36/article/view/2395

Similar Articles

1-10 of 558

You may also start an advanced similarity search for this article.