Identification of Klebsiella oxytoca by VITEK-2 System in Baghdad Hospitals
DOI:
https://doi.org/10.32007/jfacmedbagdad.2154Keywords:
Klebsiella oxytoca, Klebsiella pneumoniae, VITEK 2 system, Indole test, Bacterial identification systemAbstract
Background: Klebsiella oxytoca is a Gram-negative rod-shaped bacterium that is becoming resistant to multiple drugs and is frequently endangering patients' lives. It is a member of the human microbiota.
Objectives: To assess the value of identifying K. oxytoca using an automated diagnostic system (VITEK-2) as compared to traditional manual methods.
Methods: From July to November 2022, 136 clinical specimens were collected from patients in Baghdad hospitals. The VITEK-2 system was used to recognize the isolated bacteria to the genus and species levels. The biochemical indole test was used as a confirmatory test at the species level.
Results: K. oxytoca was more common in urine samples 49 (36.0%), followed by blood samples 21 (15.4%). Of the total collected samples, 77 (56.6%) were from inpatients and 43.3%) were from outpatients. The primary identification by cultural and microscopic examinations diagnosed all the isolates as Klebsiella. The VITEK-2 system recognized them as K. pneumoniae. The indole test confirmed the species as K. oxytoca by the formation of the red ring.
Conclusion: Using a simple biochemical test like indole is crucial in clinical laboratories to investigate the accuracy of bacterial identification at the species level. Continuous evaluation of the identification results of the automated systems is needed and can be done by updating the system software for the new emerging pathogens in hospitals.
Received June. 2023
Revised: July, 2023
Accepted Sept. 2023
Published Jan. 2024
Downloads
References
1. Power J, Calder M. Pathogenic significance of Klebsiella oxytoca in acute respiratory tract infection. Thorax. 1983;38(3):205-8. https://doi.org/10.1136/thx.38.3.205
2. Hagiwara S, Murata M, Aoki M, Kaneko M, Oshima K. Septic shock caused by Klebsiella oxytoca: an autopsy case and a survival case with driving extracorporeal membrane oxygenation. Hippokratia. 2013;17(2):171. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743625/
3. Li X, Zhang D, Chen F, Ma J, Dong Y, Zhang L. Klebsiella singaporensis sp. nov., a novel isomaltulose-producing bacterium. International Journal of Systematic and Evolutionary Microbiology. 2004;54(6):2131-6. https://doi.org/10.1099/ijs.0.02690-0
4. Andraca R, EDSON RS, KERN EB, editors. Rhinoscleroma: a growing concern in the United States? Mayo Clinic experience. Mayo Clinic Proceedings; 1993: Elsevier. https://doi.org/10.1016/S0025-6196(12)60064-0
5. Moradigaravand D, Martin V, Peacock SJ, Parkhill J. Population structure of multidrug-resistant Klebsiella oxytoca within hospitals across the United Kingdom and Ireland identifies sharing of virulence and resistance genes with K. pneumoniae. Genome Biology and Evolution. 2017;9(3):574-84. https://doi.org/10.1093/gbe/evx019
6. Fevre C, Jbel M, Passet V, Weill F-X, Grimont PA, Brisse S. Six groups of the OXY β-lactamase evolved over millions of years in Klebsiella oxytoca. Antimicrobial agents and chemotherapy. 2005;49(8):3453-62. https://doi.org/10.1128/AAC.49.8.3453-3462.2005
7. Yang J, Long H, Hu Y, Feng Y, McNally A, Zong Z. Klebsiella oxytoca complex: update on taxonomy, antimicrobial resistance, and virulence. Clinical microbiology reviews. 2022;35(1):e00006-21. https://doi.org/10.1128/CMR.00006-21
8. Hansen DS, Gottschau A, Kolmos HJ. Epidemiology of Klebsiella bacteraemia: a case control study using Escherichia coli bacteraemia as control. Journal of Hospital Infection. 1998;38(2):119-32. https://doi.org/10.1016/S0195-6701(98)90065-2
9. Brisse S, Grimont F, Grimont P. The genus Klebsiella, p 159-196. The prokaryotes Springer, New York, NY. 2006.
https://doi.org/10.1007/0-387-30746-X_8
10. Jain K, Radsak K, Mannheim W. Differentiation of the Oxytocum group from Klebsiella by deoxyribonucleic acid-deoxyribonucleic acid hybridization. International Journal of Systematic and Evolutionary Microbiology. 1974;24(4):402-7. https://doi.org/10.1099/00207713-24-4-402
11. Vergara-López S, Domínguez M, Conejo M, Pascual Á, Rodríguez-Baño J. Wastewater drainage system as an occult reservoir in a protracted clonal outbreak due to metallo-β-lactamase-producing Klebsiella oxytoca. Clinical microbiology and infection. 2013;19(11):E490-E8. https://doi.org/10.1111/1469-0691.12288
12.Lowe C, Willey B, O'Shaughnessy A, Lee W, Lum M, Pike K, et al. Outbreak of extended-spectrum β-lactamase-producing Klebsiella oxytoca infections associated with contaminated handwashing sinks. Emerging infectious diseases. 2012;18(8):1242. https://doi.org/10.3201/eid1808.111268
13.Dieckmann R, Hammerl JA, Hahmann H, Wicke A, Kleta S, Dabrowski PW, et al. Rapid characterisation of Klebsiella oxytoca isolates from contaminated liquid hand soap using mass spectrometry, FTIR and Raman spectroscopy. Faraday discussions. 2016;187:353-75. https://doi.org/10.1039/C5FD00165J
14. Chapman P, Forde BM, Roberts LW, Bergh H, Vesey D, Jennison AV, et al. Genomic investigation reveals contaminated detergent as the source of an extended-spectrum-β-lactamase-producing Klebsiella michiganensis outbreak in a neonatal unit. Journal of clinical microbiology. 2020;58(5):e01980-19. https://doi.org/10.1128/JCM.01980-19
15. Watson JT, Jones RC, Siston AM, Fernandez JR, Martin K, Beck E, et al. Outbreak of catheter-associated Klebsiella oxytoca and Enterobacter cloacae bloodstream infections in an oncology chemotherapy center. Archives of internal medicine. 2005;165(22):2639-43. https://doi.org/10.1001/archinte.165.22.2639
16. Herruzo R, Ruiz G, Gallego S, Diez J, Sarria A, Omeñaca F. VIM-Klebsiella oxytoca outbreak in a neonatal intensive care unit. This time it wasn't the drain. Journal of preventive medicine and hygiene. 2017;58(4):E302. jpmh-2017-04-e302.pdf
17. Modi DJ, Patel BV, Patel MH, Bhatt SS, Sood NK, Vegad MM. A Study of Extended Spectrum β-Lactamase (ESBL) and AmpC β-Lactamase Producing Klebsiella Pneumoniae in Neonatal Intensive Care Unit at Tertiary Care Hospital, Ahmedabad. National Journal of Community Medicine. 2012;3(03):523-8. https://njcmindia.com/index.php/file/article/view/1757
18. Versalovic J. Manual of clinical microbiology: American Society for Microbiology Press; 2011. https://doi.org/10.1128/9781555816728
19. Karim AS, Sultan KM, Al-Obaidy MW. The Incidence, Risk Factors and Diagnosis of Ventilator Associated Penumonia. J Fac Med Baghdad. 2009;51(4):341-4. https://doi.org/10.32007/jfacmedbagdad.5141076
20. Abdullah EM, Mutlak ST. The incidence of Lower (UTI) according to the age and sex in Ramadi City. J Fac Med Baghdad. 2009;51(3):289-91. https://doi.org/10.32007/jfacmedbagdad.5131126
21. Forbes BA, Sahm DF, Weissfeld AS. Diagnostic microbiology: Mosby St Louis; 2007. https://doi,org/10.4236/vp.2023.92003.
22. Majeed AA, Al-Aubydi MA. Assessment the Modulation effect of using Green synthesis ZnO NPs against Multidrug Resistant Klebsiella pneumoniae isolated from respiratory tract infection. Iraqi Journal of Science. 2019:1221-31. https://doi.org/10.24996/ijs.2019.60.6.5
23. Mustafa MS, Abdullah RM. Detection of 16S rRNA Methylases and Co-Resistance with β-lactams among Klebsiella pneumoniae isolates from Iraqi Patients. Baghdad Sci J. 2019;16:580-7. https://doi.org/10.21123/bsj.2019.16.3.0580
24. MacWilliams M. Indole Test Protocol. American Society for Microbiology. 2009. https://asm.org/getattachment/200d3f34-c75e-4072-a7e6-df912c792f62/indole-test-protocol-3202.pdf
25. Leber A. Synergism testing: broth microdilution checkerboard and broth macrodilution methods. ASM Press Washington, DC; 2016. p. 5.16. 1-5.. 23. https://doi.org/10.1128/9781555818814.ch5.16
26. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical microbiology reviews. 1998;11(4):589-603. https://doi.org/10.1128/CMR.11.4.589 .
27. Parija SC. Textbook of microbiology and immunology second edition. 2012:XXX, 1111. http://repository.poltekkes-kaltim.ac.id/id/eprint/1154
28. Kehinde A, Adedapo K, Aimakhu C, Odukogbe AT, Olayemi O, Salako B. Urinary pathogens and drug susceptibility patterns of urinary tract infections among antenatal clinic attendees in Ibadan, Nigeria. Journal of Obstetrics and Gynaecology Research. 2012;38(1):280-4.https://doi.org/10.1111/j.1447-0756.2011.01635.x
29. Sibi G, Kumari P, Kabungulundabungi N. Antibiotic sensitivity pattern from pregnant women with urinary tract infection in Bangalore, India. Asian Pacific journal of tropical medicine. 2014;7:S116-S20. https://doi.org/10.1016/S1995-7645(14)60216-9
30. Abdullah AM, Abdullah RM, Salman SL. Use of chromogenic agar in detection of urinary tract pathogens and antimicrobial susceptibility. Journal of the Faculty of Medicine Baghdad. 2009;51(1):39-42. https://doi.org/10.32007/jfacmedbagdad.5111168
31. Al-Kharkhi MA, Zeiny SMM, Ali SM. Nosocomial infections in a Surgical Floor of the General Ba'qubah Hospital; Iraq. J Fac Med Baghdad. 2016;58(1):51-7. https://doi.org/10.32007/jfacmedbagdad.581196
32. Mahdi FA, Saadoon AS, Haider HS. Prevalence and Antibacterial Resistance of Gram-Negative Bacteria Causing Respiratory Tract Infection In Critically Ill Patients. J Fac Med Baghdad. 2014;56(3):273-7. https://doi.org/10.32007/jfacmedbagdad.563496
33. Alvarez S, Stinnett JA, Shell CG, Berk SL. Klebsiella oxytoca isolates in a general hospital. Infection Control & Hospital Epidemiology. 1985;6(8):310-3. https://doi.org/10.1017/S0195941700063165
34. Dias SP, Brouwer MC, van de Beek D. Sex and gender differences in bacterial infections. Infection and Immunity. 2022;90(10):e00283-22. https://doi.org/10.1128/iai.00283-22.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Rusal E. Abd Al-Hassan, Rand R. Hafidh, Muhammad Z. Zaman
This work is licensed under a Creative Commons Attribution 4.0 International License.