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Abstract

Acute myeloid leukemia is one of the deadliest hematologic malignancies that is marked by genetic
alterations, abnormal cellular functions and proliferation. Mutations in isocitrate dehydrogenase genes,
particularly isocitrate dehydrogenase gene 1 and isocitrate dehydrogenase gene 2, have emerged as recurrent
genetic abnormalities in acute myeloid leukemia. These mutations lead to abnormal enzymatic activity,
resulting in the accumulation of 2-hydroxyglutarate, which disrupts normal cellular processes including
DNA methylation. This review article explores recent findings related to the implication of isocitrate
dehydrogenase gene mutations on the acute myeloid leukemia epimethylome and provides evidence to the
relationship between these mutations and the pathogenesis, prognosis, and treatment of acute myeloid
leukemia. A comprehensive literature search was conducted to identify relevant studies investigating the
impact of isocitrate dehydrogenase mutations on altered DNA methylation patterns of acute myeloid
leukemia-related genes. The selected studies were reviewed and analyzed to highlight the significance of
their findings. The review highlights that isocitrate dehydrogenase gene mutations in acute myeloid
leukemia are associated with widespread changes in DNA methylation patterns. These alterations primarily
affect DNA methylation of acute myeloid leukemia-associated genes, including DNA methyltransferases
and ten-eleven translocation proteins. Such epigenetic dysregulation in the DNA methylation modifying
genes contributes to global DNA hypermethylation and specific gene hypomethylation leading to abnormal
cellular functions and the development of acute myeloid leukemia. The findings of this review support the
significant impact of isocitrate dehydrogenase gene mutations on DNA methylation of acute myeloid
leukemia-related genes. Understanding the interplay between isocitrate dehydrogenase gene mutations and
DNA methylation dysregulation provides insights into acute myeloid leukemia pathogenicity and may have
implications for prognostication and targeted therapies.
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Introduction:

Acute myeloid leukaemia (AML) is a heterogeneous
disease defined by the unregulated growth of
proliferative progenitor cells that are incapable of
terminal differentiation. It is now obvious that
numerous genes are often altered in AML (1).
However, it is really challenging to identify
transformation driver genes within this large number
of leukaemia associated disrupted genes. A small
fraction of cases can be attributed to identifiable
factors, such as previous chemotherapy or exposure to
specific chemicals. However, the majority of cases are
thought to be a result of genetic alterations, including

*Corresponding Author: Duha M. Bayram
duha.bayram@yahoo.com

chromosomal abnormalities and gene mutations (2, 3).
Additionally, referring to the disease heterogeneity,
individual leukaemia’s may include many various
mutational profiles, making each AML patient
genetically distinct (4-6).

For patients’ risk-stratification and selecting the
best course of treatment, it's crucial to identify the
underlying genetic anomalies (7-9). Recently, the risk
classification of AML has been expanded to include
three prognostic groups: favourable, moderate, and
adverse. These groups take into account both
cytogenetic factors and the latest discoveries in
molecular subgrouping, in addition to the previously
known cytogenetic risk groups. These newly identified
molecular subsets exhibit distinct responses to
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standard therapeutic regimens (10-14). As cancer is
generally marked by the presence of a wave of genetic
abnormalities, identifying the disease's subtype-
specific genetic alterations is a difficult task. However,
relying on the discovery of next-generation DNA
sequencing technologies, the possibility of identifying
new recurrent mutations in AML became doable (15).
Nevertheless, such approaches offer novel sets of
candidate genes, and understanding the underlying
genetic and epigenetic pathways of such alterations
requires systematic validation through conducting of
functional studies (16). So, this review article seeks to
explore how IDH mutations affect the DNA
methylation patterns of genes linked to acute myeloid
leukemia (AML). It aims to provide a comprehensive
analysis of the impact of these mutations on epigenetic
changes, specifically focusing on DNA methylation, in
the development of AML. To structure this review, we
will begin with an introduction that provides an
overview on DNA methylation and IDH mutations.
Following that, we will delve into the molecular
mechanisms by which IDH mutations affect DNA
methylation, emphasizing their role in reshaping the
epigenetic landscape of AML-related genes. Next, we
will explore the clinical significance and prognostic
implications of IDH mutations in AML patients,
including their potential as therapeutic targets. Finally,
we will conclude the review by summarizing key
between IDH mutations and DNA methylation in the
context of AML.

Epigenetic regulation of cellular transcription activity
via DNA methylation

The epigenetic modifications including the process of
DNA  methylation (in addition to histone
modifications), which predominantly takes place in
CpG islands near the 5’ promoter region of almost
60% of human genes, is the most thoroughly
researched one (17, 18). Such epigenetic marks
demonstrate a crucial role in both normal development
and health problems. These include their impact on
embryonic development, inactivation of the X
chromosome, epigenetic reprogramming, genomic
imprinting, and lineage  specification. DNA
hypermethylation has been linked to gene silencing by
the covalent attachment of methyl groups to the 5
positions of the cytosine pyrimidine ring, which results
in suppressive gene expression (19-21).

In various cell types, the balanced regulation of
genome methylation and demethylation is a dynamic
process of gene expression. Three DNA
methyltransferases (DNMTSs) carry out the catalysis of
DNA methylation. DNMT1 plays a crucial role in
maintaining the DNA methylation state (22, 23).
DNMT3a and DNMT3b, known as "de novo"
methyltransferases, work together to establish and
maintain precise DNA methylation patterns across the
genome (24). Conversely, DNA demethylation is a
reversible process that restores gene expression
silenced by DNMTs. The activity of demethylation is
attributed to members of the ten-eleven translocation
methylcytosine dioxygenase (TET) family, including
TET1, TET2, and TET3 (25-28).

Also, numerous other proteins included in cellular
metabolic  processes contribute to  chromatin
remodeling and gene regulation as a result of the
interconnection between metabolism and epigenetics
by creating substrates or co-factors utilized by
epigenetic writers that are able to add a different
chemical modification to histones or DNA (29, 30).
One example of epigenetic modifiers is the isocitrate
dehydrogenase (IDH) enzymes. These enzymes
convert isocitrate to a-ketoglutarate, either in the
mitochondrion during the tricarboxylic acid (TCA)
cycle, specifically by IDH1, or in the cytoplasm by
IDH2. This process leads to the generation of a-
ketoglutarate, which serves as a co-factor for various
a-ketoglutarate  dependent  dioxygenases. These
include crucial enzymes such as the DNA
demethylases mediated by ten-eleven translocation
(TET) family and the histone demethylases in the
Jumoniji family (31, 32).

Mutant genes are frequently seen in cancer which
directly leads to aberrant normal DNA methylation
controls and thus generate dysregulation of gene
expression. A number of DNA methylation modifier
genes were reported in AML that may act as DNA
methyl-transfer or demethylation enzymes (31, 33).
However, the top seven most frequent DNA
methylation-related genes' mutations in AML are
illustrated in Figure (1). In the case of acute myeloid
leukemia, DNMT3A mutations were highly
documented over the world, followed by IDH1/2 and
TET2 mutation, while the ratio was equivalent in the
remaining genes.
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Figure-1: Percentage of samples with one or more mutations in DNA methylation-related genes in AML.
Clinic genomic data were adopted from the cBioPortal database.

Role of IDH1/2 as epigenetic-related mutations
genes in AML.:

IDHs gene mutations have been extensively
investigated in solid and liquid tumors since these
mutations were originally reported in glioblastoma. It
has been then found in a variety of tumor forms,
including sinonasal undifferentiated carcinoma,
chondrosarcomas, prostate cancer, and acute myeloid
leukemia (34, 35).

AML patients have been reported to exhibit acquired
mutations at varying rates. For instance, a study
conducted by (34) found that IDH mutations were
present in 16% of AML patients, in which IDH1 and
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IDH enzymes have been involved in several cellular
metabolic and epigenetic processes. About 20% of
acute myeloid leukaemia have IDH1 or IDH2
mutations, which cause amino acid alterations in
conserved residues, resulting in neomorphic enzymatic
activity, and the generation of rare metabolite 2-HG
(2-hydroxyglutarate) which accumulated in cells and
serve as oncometabolite. DNA hypermethylation,
inappropriate cell proliferation or differentiation, and

IDH2 mutations were detected in 7.6% and 8.7% of
patients, respectively. These mutations are believed to
arise from heterozygous mutations occurring in
substrate binding residues, leading to alterations in the
amino acid arginine at exon 4 of the IDH1/2 genes
(specifically, at codon R132 of IDH1 and codons R140
and R172 of IDH2) (Fig 2). The majority of IDH1
mutations were predicted to result in various
substitutions of arginine at position 132, while IDH2
mutations were primarily missense mutations causing
amino acid changes at positions p.R140 and p.R172
(Table 1 and Fig 3) (36-40).

R140QL
.
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B
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dysregulated gene expression are the results of such
IDH enzyme deregulation.

According to the existing data, it seems that IDH
mutations have a role in the development of cancer.
These mutations decrease the affinity of the enzymes
for their substrates and acquire a new function, leading
to the conversion of alpha-ketoglutarate (a-KG), a key
mediator in the Krebs cycle, into 2-hydroxyglutarate
(2-HG), which has a significant impact on
pathophysiology. The accumulation of 2-HG resulting
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from these mutations contributes to cancer
development because it structurally resembles a-KG
and can interfere with the function of enzymes that
rely on a-KG as a substrate, such as lysine
demethylases and TET proteins. Specifically, the
catalytic activity of the TET2 enzyme, a member of
the a-KG-dependent dioxygenases family, is inhibited
by the presence of R-2HG, which is produced as a
result of gain-of-function IDH1/2 mutations (Fig. 4)
(41, 42).

In a previous study, it was observed that the levels of
2-hydroxyglutarate (2-HG) are notably increased in
the blood serum of AML patients with IDH1/2
mutations. Therefore, the presence of elevated 2-HG

levels can be used as an indicator to predict the
presence of IDH1/2 mutations and the clinical
prognosis of AML (43, 44). The presence of 2-
hydroxyglutarate (2-HG) alone is capable of
facilitating the transformation of hematopoietic cells,
and this impact can be reversed by removing the
oncometabolite (45). Furthermore, mutant IDH1/2
promotes an excessive methylation pattern in
hematopoietic cells, leading to abnormalities in their
differentiation process. As a result, the suppression of
tumor suppressor genes through DNA
hypermethylation is anticipated to generate a greater
number of progenitor cells with an extended capacity
for proliferation (46, 47).
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Figure-4: IDH genes map adapted from NCBI illustrates the locations of pathogenic mutations (left: IDH1,

right: IDH2).
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Figure-4 Mutant IDH1 and IDH2 enhance production of 2HG from a-Ketoglutarate (aKG).
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Table-1: List of the most frequently occurring variation in IDH1/2 of AML recorded in NCBI

Variation (Location) Protein change Condition SNP ID Type
IDH1
€.395G>C R132P (p.Arg132Pro) Pathogenic rs121913499
€.395G>T R132L (p.Argl32Leu)  (Oct 2, 2014) Missense
€.395G>A R132H Pathogenic/Likely
(p.Arg132His) pathogenic
(GRCh38: (May 31, 2016)
Chr2:208248388) Pathogenic
(May 9, 2022)
€.394C>A R132S (p.Arg132Ser) Pathogenic/Likely rs121913499 Missense
€.394C>G R132G (p.Arg132Gly)  pathogenic
€.394C>T R132C (p.Argl32Cys) (May 31, 2016)
Pathogenic/Likely
(GRCh38: pathogenic
Chr2:208248389) (May 31, 2016)
Pathogenic/Likely
pathogenic
(May 9, 2022)
IDH2
c.516G>C R172S Pathogenic; risk  rs1057519736 Missense
(p.Argl72Ser) factor
(GRCh38: (Oct 2, 2014)
Chr15:90088605)
c.515G>A R172K, (p.Argl72Lys)  Pathogenic/Likely rs121913503 Missense
c.515G>T R172M (p.Argl72Met)  pathogenic; risk factor
(May 31, 2016)
(GRCh38:
Chr15:90088606)
c.514A>G R172G (p.Argl72Gly) Likely pathogenic  rs1057519906 Missense
c.514A>T R172W (May 31, 2016) ;
(p-Argl72Trp) Likely pathogenic risk
(GRCh3s8: factor
Chr15:90088607) (May 31, 2016)
c.419G>T R140L (p.Argl40Leu) Pathogenic/Likely rs121913502 Missense
c.419G>A R140Q (p.Arg140GIn)  pathogenic
(May 31, 2016)
(GRCh38: Pathogenic/Likely
Chr15:90088702) pathogenic
(Oct 2, 2021)
c.418C>T R140W (p.Arg140Trp)  Uncertain significance  rs267606870 Missense
(Dec 3, 2021)
(GRCh38:

Chr15:90088703)

Duha M. Bayram et al

Prognostic significance of IDH mutations

Many researchers have attempted to establish the
potential link between the occurrence of IDH
mutations and the disease's progression or prognosis of
AML aiming to explore their utility as drug targets for
treating patients on the bases of potential personalized
medicine (48). The arrangement of excessively
methylated genes in AML cases with IDH1/IDH2
mutations is similar to the pattern observed in TET2-
loss-of-function mutations. These changes in the
epigenetic profile result in impaired development of

myeloid cells, likely due to the repression of certain
transcription factors. Compared to individuals without
these mutations, patients with IDH-mutated AML are
frequently older and exhibit a reduced count of white
blood cells (49-51).

Although a recent study (52) found that a mutant-
NPM1/wild-FLT3 genotype in conjunction with an
IDH1 or IDH2 mutation confers a very good prognosis
factor. According to other research, a normal AML
karyotype carries a poor prognosis when IDH1
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mutations are present. These variations may be caused
by the specific location of the mutation in the IDH
gene, which is likely to have an impact on how the
disease will progress, or by the varied responses to
different treatment options (52).

Recent research indicates that IDH mutations alone are
not sufficient to predict prognosis accurately, and their
occurrence is influenced by age. The survival rates of
patients with wild-type IDH and those with IDH
mutations do not show significant differences.
However, for patients with IDH mutations, having
dual mutations involving both IDH and NPM1
significantly improves the prognosis for 5-year event-
free survival for AML patients compared to patients
with IDH-mutated/NPM1 wild-type. The positive
predictive impact of dual IDH/NPM1 mutation status
varies with age, particularly in younger and middle-
aged patients. Moreover, the presence of a triple
mutation (IDH/NPM1/DNMT3A) is associated with a
poorer prognosis in the subgroup of middle-aged
patients when compared to those with dual IDH/NPM1
mutations (with wild-type DNMT3A) (53).

IDH inhibitors (IDH-i) : Due tothe abundance of
research on IDH mutations and their effect on the
development of AML, several inhibitors have been
developed for the mutant IDH1/IDH2 to reduce the
deleterious effect of these mutant genes that cause
abnormal maturation of leukocyte, leads to leukaemia.
Ivosidenib and enasidenib, two of the IDH-i targets, it
works by inhibiting the IDH1 and IDH2 proteins
respectively. This inhibition permits what would
otherwise be leukaemic white blood cells to grow and
differentiate normally, lowering the number of
immature blasts and raising the percentage of mature
myeloblasts (52, 54, 55).

IDH inhibitor and relapsed/ refractory AML.:
Patients with refractory AML had considerably greater
levels of metabolic IDH1 and variability in the gene
expression related to epigenetic regulation. such
epigenetic change seems to have a significant impact
on developing refractory AML and may be helpful in
predicting the prognosis of AML (56, 57).

Recently, IDH inhibitors have shown a significant
influence in improving the clinical outcomes of AML
patients (58-60). As a result, the IDH2 and IDH1
inhibitor drugs enasidenib and ivosidenib have been
authorized for the treatment of adult AML that has
relapsed or is resistant to conventional therapy.
Although effective and reliable, IDH inhibitor
monotherapy for relapsed/ refractory (R/R) AML has
drawbacks, such as primary or acquired resistance
(61). So, for the treatment of R/R AML or newly
diagnosed AML, many clinical trials seek to find the
patients' response to mutation inhibitors (especially
IDH inhibitors) in combination with hypomethylating
drugs or conventional chemotherapy as well as in the

after hematopoietic stem cell transplantation as
maintenance therapy (62-67).

Conclusions

This review drew attention to the significance of
IDH1/2 mutations as a key valid marker to improve
the clinical outcome of AML patients via the
development of targeted therapy based on IDH1/2
inhibitors. The wide spectrum of IDH1 and IDH2 gene
mutations in AML implies the possibility of utilizing
such knowledge in stratifying AML patients into
different prognostic categories that would modify the
treatment intensification hoping to minimize the short
and long terms side effects associated with
conventional therapeutic regimens.
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