The Advantages of Combined Regional and General Anesthesia in Ophthalmic Surgery in Children

Doi: https://doi.org/10.32007/jfacmedbagdad.2063

Rand S. Abdul-Sattar Al-ANI* FICMS (Ans. & ICU)
Ali H. Mosleh Al-Maini* FICMS (Ans. & ICU)

Abstract

Background: Regional anesthesia is a common procedure in an adult patient undergoing ophthalmic surgery, but it cannot be done alone in the pediatric age group. General anesthesia is accompanied by complications intra- and post-operatively.

Objectives: to determine whether or not using regional anesthesia in combination with general anesthesia in pediatric eye procedures improves patient outcomes.

Methods: Forty children, with an age range of 6 - 12 years were included in the study that was conducted at Ghazi Al-Hariri Hospital / Department of Ophthalmology and Ibn Al-Haytham (Ophthalmology Hospital), both teaching hospitals, from December 2018 to October 2019. These children were allocated into one of two groups: GA (general anesthesia) and GA-R (general anesthesia-regional anesthesia). Heart rates, mean arterial blood pressure, oculo-cardiac reaction, and postoperative nausea and vomiting were measured. All required approvals were obtained from the scientific committee of the Iraqi Board for Medical Specializations. Statistical analysis was done using SPSS V26, with a P value of <0.05 considered significant.

Results: None of the patients developed oculo-cardiac reactions or needed additives to the anesthesia given during surgery in the GA-R compared to the GA group. Intra-operative measurements of heart rates and mean arterial blood pressure were lower in the GA group than in the GA-R group (p<0.05). Compared to the GA group, the GA-R group had a lower incidence of postoperative nausea and vomiting (p<0.05). More patients in the GA group needed analgesia than in the GA-R group.

Conclusion: Using regional anesthesia as a peribulbar block with general anesthesia is a safe and successful procedure in pediatric ocular surgeries.

Keywords: Regional Anesthesia, General Anesthesia, Peribulbar block, Oculo-cardiac Reaction

Introduction:

Ophthalmic surgery is a frequent treatment performed on children, and the conventional method of pain management is general anesthesia (1). Consequences, both intra- and post-operative, associated with various anesthesics complication, including the oculo-cardiac reflex (OCR), postoperative nausea and vomiting (PONV), postoperative irritation, and discomfort, are serious issues in juvenile ocular procedures. Additionally, repeated sobbing and squinting might be harmful to the intraocular pressure (IOP) and the corneal sutures (2, 3) .The OCR is a trigeminal vagal response that is triggered by tension on the extraocular muscles, compression mostly on the orbit, trauma, or an orbital hematoma (4). Other triggers of the OCR include hypercarbia and cerebral hypoxia. Mild anesthesia may also play a role (6). During strabismus surgery, there has been a documented incidence of transient cardiac arrest of around 1 in 2200 patients (7).

* Corresponding Author: Ghazi Al-Hariri Hospital. dr.rand.sadi@yahoo.com
**Al-Mustansiriya University, College of Medicine.alimaini2000@gmail.com

There have been reports of arrests in the sinoatrial node and fibrillation in the ventricular node (8, 9) . PONV is a common problem following ophthalmic surgery. Repeated vomiting can affect the integrity of corneal sutures, increase the cost because of the use of antiemetic drugs, and prolong the postoperative stay. PONV is mediated by the oculo-metic pathway, which shares the afferent limb of the reflex arc with OCR (11-12).

A double injection peribulbar block helps lower postoperative pain in patients who have had ocular surgeries (3, 13). Since peribulbar block generates a hypotonic eye, it is not often employed in strabismus surgery (14).

However, regional anesthesia is a common procedure in adult patients undergoing ophthalmic surgery, but it cannot be done alone in the pediatric age group. Double injection peribulbar block as an adjuvant to general anesthesia has been investigated and reported to be effective. However, this technique is risky as it is administered invisibly and may result in globe perforation and intravascular injection. The double injection peribulbar block in children carries potentially more risks than in adults because there are important anatomical differences between...
the two age groups. The eye size relative to the bony orbit is much greater in childhood. The eye occupies almost 50% of the volume of the bony orbit at birth and 33% at four years, while the adult eye takes up only 22% of the orbital volume. (1-15-18) There is little evidence concerning its usage in the pediatric age group. Hence, the recent study attempted to overcome these complications by using regional anesthetic anesthesia as an adjuvant to general anesthesia in ophthalmic surgery in children.

Patients and Methods:
A randomized clinical, non-blinded study was conducted at Ghazi Al-Hariri Hospital / Department of Ophthalmology and Ibn Al-Haytham (Ophthalmology Hospital), both teaching hospitals, from December 2018 to October 2019. Forty children with an American Society of Anesthesiology (ASA) Classification I or II (19) undergoing elective ophthalmic surgeries were enrolled. The institutional ethical committee’s approval of the Scientific Council of Anesthesia and Intensive Care of the Iraqi Board was obtained for the study. Parents’ consent was given to all patients, including their agreement on the type of anesthesia used.

Two types of ophthalmic surgeries were performed: Intraocular (cataract) or extracocular (strabismus). Inclusion criteria: Children aged 6-12 years, ASA I or II, elective ophthalmic surgeries, and body weight between 15-40 Kg.

Exclusion criteria: Family refusal, prolonged surgery >2 hours, endophthalmitis, eye injury, cerebral palsy, psychological problems, single eye, congenital abnormalities, heart diseases, and drug allergy.

Patients were randomly divided into two groups: Those who received general anesthesia only (GA group, n=20) and those who received combined general and regional anesthesia (single injection peribulbar block anesthesia) (GA-R group, n=20).

Post-operative pain was recorded using a VAS score. (20)

Post-operative recovery was assessed using a modified Aldrete Score in pediatrics (21) every 5 minutes, and the time to achieve the full score of 9 was recorded. The occurrence of PONV was assessed for 12 hours postoperatively. The complications due to peribulbar block were assessed. The data was analyzed using SPSS version 25. The data was presented as mean, standard deviation, or frequencies, as appropriate. The independent t-test (two-tailed) was used to compare the means of continuous variables between the two study groups. A P value < 0.05 was considered significant.

Results:
There were no significant differences in the demographic characteristics between the two groups (table 1).

<table>
<thead>
<tr>
<th>Variable</th>
<th>GA group no.=20</th>
<th>GA-R group no.=20</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) - Mean ± SD</td>
<td>7.9±1.4</td>
<td>8.3±1.8</td>
<td></td>
</tr>
<tr>
<td>Weight (Kg) - Mean ± SD</td>
<td>25.6±6.5</td>
<td>28.7±5.2</td>
<td></td>
</tr>
<tr>
<td>Sex (male/female) - (No.)</td>
<td>10/10</td>
<td>8/12</td>
<td></td>
</tr>
<tr>
<td>Type of surgery - (No.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratismus</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Cataract</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Duration of surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(minutes) - Mean ± SD</td>
<td>62.1±12.2</td>
<td>59.4±11.6</td>
<td></td>
</tr>
</tbody>
</table>

Among the GA-R group, not a single patient exhibited OCR, in contrast to 12 children among the GA group (60%) (p<0.05). There was a need for an atropine prescription for five of them.

None of the GA-R group required intraoperative supplemental fentanyl. In contrast, five patients in the GA group needed only one dose of fentanyl (p<0.05).

The mean end-tidal sevoflurane concentrations of the two groups were very close (2.4 ±0.39 vs 2.6±0.41). At T0 and T1, both groups’ Mean arterial pressure (MAP) and heart rate (HR) values were not statistically significant. In comparison to both its base level and the GA-R group, the values at (T2– T6) for the GA group were statistically substantially higher (p< 0.05). (Figures 1 and 2) and (Tables 2 and 3).

Figure 1: Intra-operative MAP in the study groups

<table>
<thead>
<tr>
<th>Time</th>
<th>GA group no.=20 Mean ± SD</th>
<th>GA-R group no.=20 Mean ± SD</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>90.0 ± 6.43</td>
<td>88.7 ± 7.45</td>
<td>0.350</td>
</tr>
<tr>
<td>T1</td>
<td>84.2 ± 4.66</td>
<td>86.6 ± 7.14</td>
<td>0.053</td>
</tr>
<tr>
<td>T2</td>
<td>87.0 ± 0.23</td>
<td>87.1 ± 0.16</td>
<td>0.028</td>
</tr>
<tr>
<td>T3</td>
<td>86.9 ± 0.20</td>
<td>87.1 ± 0.14</td>
<td>0.007</td>
</tr>
<tr>
<td>T4</td>
<td>86.9 ± 0.21</td>
<td>87.1 ± 0.16</td>
<td>0.008</td>
</tr>
<tr>
<td>T5</td>
<td>86.9 ± 0.24</td>
<td>87.1 ± 0.19</td>
<td>0.024</td>
</tr>
<tr>
<td>T6</td>
<td>86.8 ± 0.23</td>
<td>87.1 ± 0.16</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Table 1: Demographic and operative variables of the two study groups

Table 2: Mean intraoperative arterial pressure by time and group
In the post-anesthesia care unit (PACU) setting, the time it took for either group to get a complete Aldrete score was not similar (76 ± 0.44 minutes in the GA-R group and 24 ± 0.62 minutes in the GA group). The incidence of PONV during 12 hours post-operative and the number of children who required anti-emetics were significantly lower in the GA-R group (4 (20%) and 0 (0%), respectively, than the GA group 8 (40%) and 2 (10%), respectively). \(P<0.05 \). Throughout the first 12 postoperative hours, significantly fewer children in the GA-R group needed analgesics than those in the GA group \(P<0.05 \). When compared to the GA group, the GA-R group had a much longer period before needing their first analgesia \((p = 0.001) \), and they also required less analgesia treatment \((P<0.05) \), Table 4.

Table 4. Postoperative comparison of the two study groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>GA group n.=20</th>
<th>GA-R group n.=20</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to achieve full Aldrete score (minutes)</td>
<td>76 ± 0.44</td>
<td>24 ± 0.62</td>
<td>0.001</td>
</tr>
<tr>
<td>Time to first analgesic (hour)</td>
<td>0.36 ± 0.56</td>
<td>1.14 ± 0.72</td>
<td>0.001</td>
</tr>
<tr>
<td>Number of cases needing analgesia within the first 12 hours</td>
<td>16 (80%)</td>
<td>8 (40%)</td>
<td>0.0099</td>
</tr>
<tr>
<td>Number of analgesic doses administered within the first 12 hours</td>
<td>14 (70%)</td>
<td>6 (30%)</td>
<td>0.0114</td>
</tr>
<tr>
<td>Frequency of PONV during the first 12 hours</td>
<td>4 (20%)</td>
<td>0</td>
<td>0.0348</td>
</tr>
<tr>
<td>Total number of children needing antiemetic</td>
<td>8 (40%)</td>
<td>2 (10%)</td>
<td>0.0285</td>
</tr>
</tbody>
</table>

Discussion:

The current research demonstrated that a peribulbar block administered via a single dose injection decreased the risk of OCR, patients undergoing fentanyl necessity, and PONV because once taken in conjunction with general anesthesia in pediatric ophthalmic procedures. Additionally, it lengthened the time until the patient required their first postoperative analgesic medication. Earlier research (1, 22) in pediatrics employed instruments that were 16 millimeters long while doing double injections of peribulbar blocks. The injection method used in this research was carried out using a relatively short needle, measuring 12 millimeters in length and having a gauge size 28. This was done to decrease the risks of side effects associated with longer needles, including bleeding or lacerations of the cornea (23). Using a single injection in the current research wasn't associated with the health problems encountered during the double injection system. These complications noted in the double injection method are severe but uncommon, such as Injuries to the vascular system or instances of misdirection (23).

Surgeons prefer the peribulbar block because the eyeball becomes centrally located after the block, which is beneficial in strabismus surgery and is associated with a high risk of OCR. Compared to the GA category, the frequency of OCR was much lower in the GA-R due to the peribulbar block. This may be related to limiting the sensory limb of OCR and limiting the sensory inputs from muscular tension, which is similar to the results of published research (24, 25).

In accordance with our results, Deb et al. (1) reported that 4% of children in the peribulbar block group experienced OCR compared to 60% in the GA group when they studied the efficacy of a double injection technique for peribulbar block as adjuvant to GA in ophthalmic surgery. The research carried out by Gupta et al. (22) found that the use of double injection peribulbar block in combination with GA reduced OCR occurrence in people undergoing strabismus surgical procedures. The percentage of children who experienced OCR was 13% in the GA-R group and 94% in the GA group.

Table 3. Mean intraoperative heart rate by time and group

<table>
<thead>
<tr>
<th>Time</th>
<th>GA group n.=20 Mean ± SD</th>
<th>GA-R group n.=20 Mean ± SD</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>89.6 ± 7.3</td>
<td>91.3 ± 14.37</td>
<td>0.562</td>
</tr>
<tr>
<td>T1</td>
<td>95.1 ± 6.29</td>
<td>97.2 ± 15.05</td>
<td>0.541</td>
</tr>
<tr>
<td>T2</td>
<td>97.1 ± 0.18</td>
<td>96.8 ± 0.22</td>
<td>0.016</td>
</tr>
<tr>
<td>T3</td>
<td>97.0 ± 0.13</td>
<td>96.8 ± 0.20</td>
<td>0.015</td>
</tr>
<tr>
<td>T4</td>
<td>97.1 ± 0.19</td>
<td>96.9 ± 0.21</td>
<td>0.023</td>
</tr>
<tr>
<td>T5</td>
<td>97.9 ± 0.18</td>
<td>96.9 ± 0.26</td>
<td>0.016</td>
</tr>
<tr>
<td>T6</td>
<td>97.1 ± 0.16</td>
<td>96.8 ± 0.23</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Figure 2: Intra-operative HR in the study groups

Table 4: Postoperative comparison of the two study groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>GA group n.=20</th>
<th>GA-R group n.=20</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to achieve full Aldrete score (minutes)</td>
<td>76 ± 0.44</td>
<td>24 ± 0.62</td>
<td>0.001</td>
</tr>
<tr>
<td>Time to first analgesic (hour)</td>
<td>0.36 ± 0.56</td>
<td>1.14 ± 0.72</td>
<td>0.001</td>
</tr>
<tr>
<td>Number of cases needing analgesia within the first 12 hours</td>
<td>16 (80%)</td>
<td>8 (40%)</td>
<td>0.0099</td>
</tr>
<tr>
<td>Number of analgesic doses administered within the first 12 hours</td>
<td>14 (70%)</td>
<td>6 (30%)</td>
<td>0.0114</td>
</tr>
<tr>
<td>Frequency of PONV during the first 12 hours</td>
<td>4 (20%)</td>
<td>0</td>
<td>0.0348</td>
</tr>
<tr>
<td>Total number of children needing antiemetic</td>
<td>8 (40%)</td>
<td>2 (10%)</td>
<td>0.0285</td>
</tr>
</tbody>
</table>
The increased occurrence of oculocardiac reflex in the GA category found in the latter research compared to the current investigation may be attributable to the younger age group (2 – 13 years) since young children have a significant propensity to have higher resting vagal tone than adults (26). In addition, all participants were about to receive a strabismus operation, a procedure recognized to result in a greater rate of OCR (27, 28).

In the present study, the peribulbar block administered with a single injection was sufficient to provide appropriate intraoperative analgesia, as shown by decreased intraoperative fentanyl required and maintained hemodynamics in the GA-R group. These findings are consistent with those of earlier studies that looked into localized blocks' intraoperative analgesic impact during ocular surgical procedures (1, 3, and 29). Using a peribulbar block with a single injection as just an adjuvant to GA during the present trial helped reduce the likelihood of PONV. This was in agreement with the results of Gupta et al. (22), who found that using a double injection peribulbar block satisfactorily significantly reduced the PONV in people who had undergone ophthalmic surgical operation while having received GA. The participants in these studies were given GA while having the operation.

Adolescent patients with vitreoretinal procedures who were given a peribulbar block by a single injection in combination with GA had outcomes comparable to those described above (30). Research on a single-injection peribulbar block coupled with general anesthesia in children having ocular operations was published by Elgohary et al. and reached the same findings (31). Subramaniam et al. (3) reported the rate of PONV to be 54.8% in patients who received double injection peribulbar block, compared to 81.4% in those who had GA. They explained this high incidence across both groups by the longer duration of the vitreoretinal operation and the diminishing effect of the block.

While looking at the peribulbar block both as an adjuvant to GA and GA by itself in ocular procedures, Chhabra et al. (14) and Moral et al. (32) were unable to find a difference in PONV, which is inconsistent with our results. The utilization of total intravenous anesthesia (TIVA) may have contributed to this result owing to the antemetic effects of propofol (33). Although Shende et al. (24) evaluated the use of the peribulbar block as an adjuvant to GA in surgeries for retinal detachment, researchers suggested that perhaps the duration of the first rescue analgesia was equal in the peribulbar and GA groups. This finding is by results reported by Ghali and Btarny in 2010 (32) when they studied the effect of single injection peribulbar block in adults undergoing vitreoretinal. Also, Subramaniam et al. (3) reported similar results when using double injection peribulbar block in pediatrics.

In contrast, when Shende et al. (24) investigated the usage of the peribulbar block as an adjuvant to general anesthesia during retinal detachment surgery, they found that the time first to rescue analgesia was comparable in peribulbar and GA groups. This could be explained by using a lower concentration of bupivacaine (0.25%) in the peribulbar block group and morphine in the GA group, as stated by Ghali and Btarny (32).

Conclusion:
Utilizing a local single-injection peribulbar anesthetic drug with GA in pediatric ocular surgeries is a useful method that may be used as an alternate to GA alone. It results in a low frequency of opioid-related complications, fewer requests for intraoperative opioids, steady intraoperative hemodynamics, fewer instances of nausea and vomiting after surgery, and enhanced postoperative analgesia.

Authors’ contributions:
Dr. Rand Saadi Abdul-Sattar Al-Ani: Writing the project, collecting data, writing draft, and research.
Dr. Ali Hadi Mosleh Al-Maini: Supervisor, concept of the study, reviewing manuscript

Authors’ Declaration

Conflicts of Interest: None.

We hereby confirm that all the Figures and Tables in the manuscript are ours. Besides, the Figures and images, which are not ours, have been permitted re-publication and attached to the manuscript. Authors sign on ethical consideration’s approval-Ethical Clearance: The project was approved by the local ethical committee of (the Iraqi Board for Medical Specializations) according to code number (No 88624.2.2020).

References
4. Breijo Marquez FR. Abnormal Heart Rhythms. 2015;97:105. DOI: 10.5772/59212
5. Hahnenkamp K, Homemann CW, Fischer LG, Durieux ME, Muehlendyck H, Braun et al. Effect of different anaesthetic regimes on the oculo-cardiac

DOI: 10.1111/j.1460-9592.2000.00588.x

30. Ghali AM, Hafez A. Single-injection percutaneous peribulbar anaesthesia with a short needle as an alternative to the double injection
DOI: 10.1213/ANE.0b013e3181c293bd
https://doi.org/10.1016/j.ejga.2011.02.003
DOI:10.1213/01.ane.0000198638.93784.42
https://www.researchgate.net/publication/24221672
4. Assessment of the Rate of Nausea, Vomiting, and Pain in Patients with Strabismus Anaesthetised d with Propofol
DOI: 10.1111/j.1365-2044.2009.06191.x
https://doi.org/10.32007/jfacmedbagdad.544692
36. Salman IA, Kanaan SA. Comparison between the effect of propofol (TIVA) and inhalational anesthesia (halothane) on early postoperative nausea and vomiting. JFacMedBagdad [Internet]. 2013 Jul. 1 [cited 2023 Jan 23]; 55(2):111-4. DOI: https://doi.org/10.32007/jfacmedbagdad.552637

How to cite this Article

Copyright (c) 2023 Rand Saadi Abdul-Sattar, Ali Hadi Al-Maini, Mais Razaq Jaafar

The Advantages of Combined Regional and General Anesthesia in Ophthalmic Surgery in Children
Rand S. Abdul-Sattar Al-Ani