Evaluation of the Role of Serum Malondialdehyde in the Pathogenesis of Diabetic Retinopathy

DOI: https://doi.org/10.32007/jfacmedbagdad.6431957

Zena M. Hassan * BSc, MSc
Rana A. Hamdi * BSc, PhD
Ebtahal N. Al Bassam ** MBChB, DO

Abstract:

Background: The most typical consequence of diabetes mellitus is diabetic retinopathy. An important part of the etiology of diabetes and diabetic retinopathy is played by oxidative stress. Malondialdehyde is a dialdehyde that is moderately toxic and is frequently used as a marker for oxidative stress as well as lipid peroxidation.

Objectives: To assess the serum malondialdehyde levels in diabetic patients with and those without retinopathy and to compare these levels to controls. In additions to, investigate the relationship between serum malondialdehyde level and long glycemic control, the glycated hemoglobin (HbA1c).

Patients and Methods: This case-control study included (120) individuals from 40 to 70 years of age. They were divided into three groups: Group 1: 40 type 2 diabetic patients with retinopathy, Group 2: 40 type 2 diabetic patients without retinopathy, and Group 3: 40 controls. The biochemical tests included fasting blood glucose measured by Cobas c 311 systems, glycated hemoglobin HbA1c measured by Cobas c 111 systems, and serum malondialdehyde (MDA) measured by enzyme linked immunosorbent assay (ELISA).

Results: A higher mean value of (MDA) was found serum diabetic patients with and without retinopathy as compared to control (p=0.0001). As well as a significantly higher mean value of serum (MDA) in diabetic patients with retinopathy as compared to those without (p=0.0001). A significant positive correlation was found between serum (MDA) and HbA1C in diabetic patient with retinopathy group (r=0.931, p=0.0001).

Conclusion: Higher serum levels of malondialdehyde is an indicator of increased lipid peroxidation that may be involved in pathogenesis of retinopathy in uncontrolled type 2 diabetic patients.

Keywords: Oxidative stress, diabetic retinopathy, malondialdehyde.

Introduction:

Diabetes mellitus (DM) is a chronic condition that is defined by an elevated blood sugar level. It happens either when the body does not produce enough insulin or when the cells do not respond to the insulin that is produced (1,2,3). DM is associated with many complications (4). Retinopathy is one of DM's long-term consequences, which may result in vision loss, Nephropathy, atherosclerotic cardiovascular disease, peripheral neuropathy, arterial disease, as well as cerebral vascular disease are also possible complications of DM (5). Diabetic retinopathy (DR) is a known cause of blindness in people in the working age, and is one of the most important pathologic vascular effects of diabetes (6). The pathophysiology of retinal microvascular injury is heavily influenced by hyperglycemia (7), as it accelerates the development of oxidative stress and increases plasma free radical concentration is hyperglycemia (8). Through the production of free radicals, particularly reactive oxygen species (ROS) (4). Vascular leakage, vascular malfunction, and pathological angiogenesis are all indicators of (DR) and are influenced by the overproduction of ROS (9). The ability of biological systems to detoxify (ROS) is out of balance during oxidative stress, which causes these substances to accumulate (10). Oxidative stress, and ROS, can damage DNA, proteins, and lipids, causing adjustments to DNA and proteins as well as lipid peroxidation. (MDA) is a by-product of polyunsaturated fatty acid peroxidation (11). And is an extremely dangerous chemical that develops from lipid peroxidation as a result of free radical damage (9). MDA is associated with oxidative stress and poor antioxidant defense, which promotes the progression of DR (12). Serum
MDA level is a sensitive marker of lipid peroxidation that is a useful measure of oxidative stress status (11). Since hyperglycemia is the primary cause of lipid peroxidation, the rise in serum MDA shows that this rate of MDA has increased (13).

Cases and Methods:
This case–control study included (120) individuals from 40 to 70 years of age. Participants were old diabetic but new retinopathy included all patients coming to the center of clients of the Diabetic Control Clinic and Diabetes/ Specialized Center for Endocrinology and Ibn- Al Haitham Teaching Hospital in Rusafa city in Baghdad. November 2021 to January 2022. Informed consent was obtained from each participant. The study was approved by the Scientific Committee of the College of Medicine/ University of Baghdad. Individuals were divided into three groups: 40 type 2 diabetics with retinopathy in Group 1, 40 type 2 diabetics with no retinopathy in group 2, and 40 controls group three.

Patients with a history of severe eye illness or retinal detachment, type1DM, end-stage renal disease, malignancies, end-stage cardiac disease, immunosuppressive drug usage in the past or present, or IV drug steroid users were excluded from the study. The diagnosis of DM was based on the history of type 2 DM, fasting serum glucose (FSG > 126) and glycated hemoglobin (HbA1C > 6.5%) according to the WHO criteria. The diagnosis of DR was made by after an ophthalmologist through history taking clinical and ophthalmological examination which included examination of the fundus by a slit lamp bio-microscope and indirect ophthalmoscope with 90-D lens, fundus color photograph centered on the macula, and optical coherence tomography (OCT).

Blood tests included glycated hemoglobin (HbA1C) measured by autoanalyzer (cobs) C111, fasting serum glucose (FSG) by autoanalyzer (cobs) C311 and serum MDA levels by an enzyme-linked immunoassay (ELISA).

Statistical analysis:
Data analysis was done using SPSS-27 (Statistical Packages for Social Sciences- version 27). Simple statistics such as mean, standard deviation, and range were used to describe the groups. When comparing two independent means, the Student’s t-test was used, and when comparing more than two means, the ANOVA test was used. A P value of less than 0.05 was considered statistically significant.

Results:
The mean values of FBS and HbA1C in the two diabetic patients groups (with and without retinopathy) were significantly higher p = 0.0001 than the controls figures (1 and 2).
Table(1): Mean value of serum Malondialdehyde level in the studied groups.

<table>
<thead>
<tr>
<th>T2DM Retinopathy</th>
<th>T2DM Control</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean±SD (Range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malondialdehyde (MDA) (mmol/ml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANOVA</td>
<td>DR x C</td>
<td>DM x DR</td>
</tr>
<tr>
<td>27.94±4.45</td>
<td>(20.2)</td>
<td>5.2±1.0</td>
</tr>
<tr>
<td>35.7</td>
<td>(10.34-18.9)</td>
<td>6.91</td>
</tr>
</tbody>
</table>

Asignificant Positive correlation was found between serum MDA and HbA1C in diabetic patient with retinopathy group (r=0.931, p=0.0001), in Figure3.

Figure (3) The correlation between MDA and HbA1C (r=0.931, p=0.001) in the diabetics retinopathy group

Discussion:
Hyperglycemia causes oxidative stress that is related to diabetes pathophysiology. Strong oxidative stress may reason harm to cells leading to microvascular issues that involve diabetes retinopathy. MDA is a three-carbon dialdehyde with a high reactivity that is created as a byproduct of lipid peroxidation. It is a marker system that can be utilized to detect complications associated with diabetes.

The result of this study revealed a higher of serum MDA levels in diabetic both with and without retinopathy. This finding in agreement with Dave et al. who showed the MDA levels higher in patients with DM than in controls. A higher level of oxidants is found in DM, as a result. Moreover, a recent study revealed higher level of MDA in DR in comparison to both DM without retinal damage and control suggesting that the the high level of MDA in diabetic groups result from oxidative stress-induced lipid peroxidation.

Oxidative stress is important for the development of diabetes' pathology. Oxidative stress negatively affects the insulin's functions via numerous pathways interacting and producing ROS. These might weaken the pancreatic islet cells, which would cause them to release less insulin. Moreover, free radical production via non-enzymatic protein glycation, enhanced lipid peroxidation and glucose oxidation results in cellular injury machinery, alterations to the cell membrane, enzyme damage increased insulin resistance and diabetes risk.

Conclusions:
Higher serum levels of malondialdehyde is an indicator of increased lipid peroxidation that may be involved in the pathogenesis of retinopathy in uncontrolled type 2 diabetic patients.

Authors’ Contributions:
Idea, design, and critical revision of the study: Zena Mohammed Hassan, dr Rana Ali Hamdi. Data gathering, analysis, and interpretation are all steps in the writing of a manuscript. : Zena Mohammed Hassan, dr Rana Ali Hamdi and diagnosis and Samples were provided by dr Ebtelah Nouri Al Bassam

References:
4- Atoom AEA, Osman AL, Babker AM. Correlation of oxidative stress markers malondialdehyde (MDA), antioxidant vitamins A, E, and C with glycated hemoglobin (HBA1C) levels in Type 2 diabetes mellitus. Asian J Pharm Clin Res. 2018; 11(5):281-283.
Evaluation of the Role of Serum Malondialdehyde in the Pathogenesis of Diabetic Retinopathy

Zena M. Hassan