HLA ASSOCIATION WITH CHILDHOOD ACUTE LYMPHOBLASTIC LEUKEMIA

Dr. BATool M. MAHDI *M.B.Ch.B., M.Sc.
SALAWA M. SHAREEF **(B.S.)

Summary:

OBJECTIVE Many associations have been found between specific HLA antigens and increased susceptibility to various diseases. So we tried to associate class I and class II antigens with acute lymphoblastic leukemia. We also demonstrate the presence of antibodies in serum of acute lymphoblastic leukemic patients against HLA class I.

DESIGN: Prospective study.

SETTING: Tissue typing and histocompatibility center at Al-Karamah Teaching Hospital.

PATIENTS AND METHOD: 70 acute lymphoblastic leukemia patients from pediatric hospitals. HLA (human leukocyte antigens) typing done for them by serological method and cross matching and blood grouping were also done for them.

RESULTS: There was a significant difference between patients and control groups regarding HLA-A6, DR1, DR4, DR7, DQ1, DQ2, DQ3, DQ4. There was 42.6% (10/70) of patients had antibodies against HLA class I. There was no significant association between blood group and acute lymphoblastic leukemia.

CONCLUSION: Genetic factor increased susceptibility with acute lymphoblastic leukemia (HLA-DR1, DQ1, HLA-DR4, DQ4, HLA-DR4, DQ3, HLA-DR7, DQ2). This HLA typing increased susceptibility to be affected with leukemia after infection.

RECOMMENDATION: HLA typing was done to acute lymphoblastic leukemic patients by molecular-DNA based method (PCR-SSP, RSCA) in addition to serological method.

KEY WORD: ALL, HLA typing, antibodies, blood group.

Introduction

Leukemias are a group of malignant disorders of the hematopoietic tissues characteristically associated with increased numbers of primitive white cells (blasts) in the bone marrow. The cause of the leukemia is unknown in the majority of patients. Several factors are associated with development of leukemia like: ionizing radiation, cytotoxic drugs, retroviruses, immunological and genetic factors (1). Certain human diseases occur more frequently among individuals who carry particular MHC alleles. The main categories of diseases studied having a positive association with HLA antigens are those with a known or suspected hereditary factor (2) and those with a possible immunological basis (3). So we tried to investigate HLA class I and class II in children with acute lymphoblastic leukemia to detect the presence of antibodies directed against HLA class I and II antigens.

PATIENTS AND METHODS

- PATIENTS GROUP: Consist of seventy Iraqi Arab Muslims children patients complaining from acute lymphoblastic leukemia from pediatrics hospitals in first remission after treatment with traditional therapeutic regime. Lastly they were indicated for allogeneic bone marrow transplantation. Their age ranged from 5-11 years with median age (8 years). Fifty of them were male and the rest were female.

- CONTROL GROUP: Consist of 500 healthy control group, their age ranged from 3-45 years, median was 25 years. 355 of them were male and the rest was female.

HLA typing for class I and II, cross matches for detection antibodies in their serum were done by complement dependent lymphocytotoxicity test (4). Blood group were also done for them. Statistical analysis was done by using Chi-square test.
RESULTS:
Acute lymphoblastic leukemia were more common in male children. Their phenotype and
gene frequency in those patients were shown in table -1-. there was no significant difference between patients group and control group in the
following HLA antigens : A2, A3, A11, A24, A26,
A33, B7, B8, B18, B41, B44, B53, B38, B37, B39,
B53, B60, B63, C3, C4, C7, DR52, DR53, DR2,
DR3, DR5, DR6, DR10. In addition, there was
significant difference in the following antigens :
(Cw6, DR4, DR1, DR7, DQ1,DQ2,DQ3,DQ4)
table -1-. Relative risks were equal one or more or
less than one in different antigens table-1A-. The
percentage of acute lymphoblastic leukemic
patients who had antibodies in their serum against
HLA antigens class I (positive cross- matches) was
(14.2%) table-2-. Their was no significant
difference between patients and control regarding
blood groups as shown in the table -3-.

DISCUSSION:
It had been suggested that childhood leukemia
may be the abnormal outcome of a common
infestation. Rare events caused by a common
environmental events such as infestation are likely to
be influenced by host genetic susceptibility (5). We
have therefore investigate whether immunogenetic
(HLA typing) susceptibility contribute to the risk
of childhood acute lymphoblastic leukemia . In this
preliminary study we report that children with acute
lymphoblastic leukemia carry the following HLA
locus alleles: HLA-Cw6, DR1, DR4, DR7, DQ1,
DQ2, DQ3, DQ4 with significant difference than the
control group , their relative risks were 3 , 2 ,
1.7, 7.1, 3.2, 9.2, 10.1, 3.5 and 0.2 respectively.
Moreover, there is a linkage disequilibrium between
(DR1 DQ1, DR7 DQ2, DR4 DQ3 and DR4 DQ4)
which is in agreement with other results (6). These
results suggest that HLA - C , HLA- DR and HLA-
DQ either alone or with other alleles contribute to
the risk of childhood acute lymphoblastic leukemia
possibly by increasing susceptibility to an
infectious agent (5).Other studies showed that HLA
- DPB1* 0201/ *0301/0401 and / * 0402 were
more frequent in patients with acute lymphoblastic
leukemia (ALL)(5).

A molecular analysis was carried in ALL
patients to investigate the heterozygosity for HLA-
DR53 and were not different between patients and
control (7). It is in agreement with our results
regarding HLA- DR 53 and DR52. Molecular
mimicry of an HLA-DR 53 epitope by oncogenic re'to
viruses or susceptibility genes in linkage
disequilibrium with HLA-DR 53 may be
responsible for this association (7).

It had been found that DR4 and DQ2 were
significantly correlated with acute myeloid
leukemia with favorable remission rates and
s survival (8). While in our study we showed that
HLA-DR4 and DQ2 are significantly correlate with
ALL. Possible mechanisms for this association
include the linkage or co- inheritance of an
occugen, facilitate the binding of a transforming
virus , toxin, cytokine and impaired
imunerecognition of an emerging neoplas (8).

Other HLA antigen that were detected included
HLA - B38 which is present in 10-20 % of the
Jewish population and is associated with T-
cell leukemia (9) and HLA-B35 increased in Ashkenazi
Jews of European origin with chronic
lymphoblastic leukemia (10). While in our study
HLA- DR35 and B38 , there were no significant
differences between patients and control probably
due to racial factors. We only studied Arab
Muslims.

Family studies showed that Cw3 and Cw4
may be markers for leukemia susceptibility genes
(17). This observations imply that in leukemia
families unknown MHC - linked recessive factors
linked to Cw3 and Cw4 alleles may be due to
susceptibility genes which also cause segregation
distortion of HLA genes and probably development
al errors (17). In our study , we only analyzed ALL
and we only studied patients and not whole family
because of shortage of materials and cost. We found
that only Cw6 had significant difference between
patients and control. In the future we will do family
study.

The frequencies of HLA-DRB1*0403, *0802,
*1403 and *1405 were significantly higher in
Japanese patients with chronic myelogenous
leukemia (11). Our results showed that HLA -DR4
had significant difference in patients with ALL.

DNA typing of HLA- alleles in CLL patients
showed that increased frequencies of HLA-DRB4
* 0103, DRB1* 0401, DQB1 * 0302 and HLA -
DPB1* 0301 in patients with CLL (12). Our data
showed that DR4 and DQ3 had significant
association with ALL. This suggest that factors
within or close to the human MHC class II regions
confer susceptibility to CLL (12).

Other results found that male patients had a
higher frequencies of DQA * 0101 / *0104 and
DQB1 * 0501 than control group in ALL . this
results suggest a male associated susceptibility
haplotype in ALL and supports an infectious
etiology (13).This is in agreement with our results
that there was significant association and increase
in HLA-DQ1 in male patients with ALL.

Our data showed no significant increase in
antibodies in serum patients .Other studies showed
decrease in these antibodies due to using leukocyte
depleted blood (14).

Lastly there was no association between
blood group and ALL.

This difference in results may be due to
racial factors , religion, method we used
(serological) while all studies used molecular DNA
based method (PCR-SSP, RSCA) which is more accurate and sensitive (15,16).

REFERENCES:

<table>
<thead>
<tr>
<th>HLA antigens</th>
<th>Patient No.</th>
<th>Patient phenotype</th>
<th>Patient gene frequency</th>
<th>Control No.</th>
<th>Control phenotype</th>
<th>Control Gene frequency</th>
<th>Chi square</th>
<th>P-value</th>
<th>(Odd ratio) Relative risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>22</td>
<td>0.3</td>
<td>0.1</td>
<td>200</td>
<td>0.4</td>
<td>0.2</td>
<td>1.2</td>
<td>N.S.</td>
<td>0.7</td>
</tr>
<tr>
<td>A3</td>
<td>12</td>
<td>0.1</td>
<td>0.09</td>
<td>89</td>
<td>0.1</td>
<td>0.09</td>
<td>0.005</td>
<td>N.S.</td>
<td>1</td>
</tr>
<tr>
<td>A11</td>
<td>8</td>
<td>0.1</td>
<td>0.1</td>
<td>57</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0004</td>
<td>N.S.</td>
<td>1</td>
</tr>
<tr>
<td>A24</td>
<td>19</td>
<td>0.2</td>
<td>0.1</td>
<td>108</td>
<td>0.2</td>
<td>0.1</td>
<td>1.8</td>
<td>N.S.</td>
<td>1</td>
</tr>
<tr>
<td>A26</td>
<td>9</td>
<td>0.1</td>
<td>0.07</td>
<td>40</td>
<td>0.08</td>
<td>0.04</td>
<td>2</td>
<td>N.S.</td>
<td>1.6</td>
</tr>
<tr>
<td>A33</td>
<td>18</td>
<td>0.2</td>
<td>0.1</td>
<td>110</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>N.S.</td>
<td>1.2</td>
</tr>
<tr>
<td>B7</td>
<td>7</td>
<td>0.1</td>
<td>0.05</td>
<td>30</td>
<td>0.06</td>
<td>0.03</td>
<td>1.9</td>
<td>N.S.</td>
<td>1.6</td>
</tr>
<tr>
<td>B44</td>
<td>9</td>
<td>0.1</td>
<td>0.07</td>
<td>58</td>
<td>0.1</td>
<td>0.06</td>
<td>0.1</td>
<td>N.S.</td>
<td>1</td>
</tr>
<tr>
<td>B35</td>
<td>12</td>
<td>0.1</td>
<td>0.09</td>
<td>71</td>
<td>0.1</td>
<td>0.07</td>
<td>0.6</td>
<td>N.S.</td>
<td>1.2</td>
</tr>
<tr>
<td>B38</td>
<td>1</td>
<td>0.01</td>
<td>0.05</td>
<td>3</td>
<td>0.006</td>
<td>0.05</td>
<td>0.6</td>
<td>N.S.</td>
<td>2.4</td>
</tr>
<tr>
<td>B60</td>
<td>3</td>
<td>0.04</td>
<td>0.05</td>
<td>13</td>
<td>0.02</td>
<td>0.05</td>
<td>0.6</td>
<td>N.S.</td>
<td>1.6</td>
</tr>
<tr>
<td>B41</td>
<td>8</td>
<td>0.1</td>
<td>0.1</td>
<td>55</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>N.S.</td>
<td>1</td>
</tr>
<tr>
<td>B8</td>
<td>4</td>
<td>0.05</td>
<td>0.05</td>
<td>29</td>
<td>0.05</td>
<td>0.05</td>
<td>0.0008</td>
<td>N.S.</td>
<td>0.9</td>
</tr>
<tr>
<td>B63</td>
<td>2</td>
<td>0.02</td>
<td>0.05</td>
<td>16</td>
<td>0.03</td>
<td>0.05</td>
<td>0.2</td>
<td>N.S.</td>
<td>0.8</td>
</tr>
<tr>
<td>B39</td>
<td>1</td>
<td>0.01</td>
<td>0.05</td>
<td>1</td>
<td>0.002</td>
<td>0.05</td>
<td>2.6</td>
<td>N.S.</td>
<td>7.2</td>
</tr>
<tr>
<td>B18</td>
<td>3</td>
<td>0.04</td>
<td>0.05</td>
<td>11</td>
<td>0.02</td>
<td>0.05</td>
<td>1.1</td>
<td>N.S.</td>
<td>1.9</td>
</tr>
<tr>
<td>B37</td>
<td>1</td>
<td>0.01</td>
<td>0.05</td>
<td>2</td>
<td>0.004</td>
<td>0.05</td>
<td>1.2</td>
<td>N.S.</td>
<td>3.6</td>
</tr>
<tr>
<td>B53</td>
<td>2</td>
<td>0.02</td>
<td>0.05</td>
<td>6</td>
<td>0.01</td>
<td>0.05</td>
<td>1.2</td>
<td>N.S.</td>
<td>2</td>
</tr>
<tr>
<td>C6</td>
<td>6</td>
<td>0.08</td>
<td>0.05</td>
<td>14</td>
<td>0.02</td>
<td>0.05</td>
<td>6.04</td>
<td>P<0.01</td>
<td>3.2</td>
</tr>
<tr>
<td>C7</td>
<td>20</td>
<td>0.2</td>
<td>0.1</td>
<td>120</td>
<td>0.2</td>
<td>0.1</td>
<td>0.6</td>
<td>N.S.</td>
<td>1.2</td>
</tr>
<tr>
<td>C3</td>
<td>2</td>
<td>0.02</td>
<td>0.05</td>
<td>6</td>
<td>0.01</td>
<td>0.05</td>
<td>1.2</td>
<td>N.S.</td>
<td>2.4</td>
</tr>
<tr>
<td>C4</td>
<td>16</td>
<td>0.2</td>
<td>0.1</td>
<td>122</td>
<td>0.2</td>
<td>0.1</td>
<td>0.008</td>
<td>N.S.</td>
<td>0.8</td>
</tr>
<tr>
<td>DR53</td>
<td>35</td>
<td>0.5</td>
<td>0.2</td>
<td>60</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>N.S.</td>
<td>7.3</td>
</tr>
<tr>
<td>DR52</td>
<td>23</td>
<td>0.3</td>
<td>0.2</td>
<td>160</td>
<td>0.3</td>
<td>0.2</td>
<td>0.02</td>
<td>N.S.</td>
<td>1</td>
</tr>
<tr>
<td>DR3</td>
<td>15</td>
<td>0.1</td>
<td>0.1</td>
<td>110</td>
<td>0.2</td>
<td>0.1</td>
<td>0.01</td>
<td>N.S.</td>
<td>0.9</td>
</tr>
<tr>
<td>DR4</td>
<td>22</td>
<td>0.3</td>
<td>0.2</td>
<td>30</td>
<td>0.06</td>
<td>0.05</td>
<td>47.8</td>
<td>P<0.005</td>
<td>7.1</td>
</tr>
<tr>
<td>DR2</td>
<td>22</td>
<td>0.3</td>
<td>0.2</td>
<td>110</td>
<td>0.2</td>
<td>0.1</td>
<td>3</td>
<td>N.S.</td>
<td>1.6</td>
</tr>
<tr>
<td>DR5</td>
<td>10</td>
<td>0.1</td>
<td>0.1</td>
<td>40</td>
<td>0.08</td>
<td>0.05</td>
<td>3</td>
<td>N.S.</td>
<td>1.9</td>
</tr>
<tr>
<td>DR1</td>
<td>13</td>
<td>0.1</td>
<td>0.1</td>
<td>90</td>
<td>0.1</td>
<td>0.1</td>
<td>6.7</td>
<td>P<0.01</td>
<td>1.7</td>
</tr>
<tr>
<td>DR7</td>
<td>12</td>
<td>0.1</td>
<td>0.1</td>
<td>30</td>
<td>0.06</td>
<td>0.05</td>
<td>11.1</td>
<td>P>0.005</td>
<td>3.2</td>
</tr>
<tr>
<td>DR10</td>
<td>3</td>
<td>0.04</td>
<td>0.05</td>
<td>40</td>
<td>0.08</td>
<td>0.05</td>
<td>1.2</td>
<td>N.S.</td>
<td>0.5</td>
</tr>
<tr>
<td>DR6</td>
<td>3</td>
<td>0.04</td>
<td>0.05</td>
<td>10</td>
<td>0.02</td>
<td>0.05</td>
<td>1.4</td>
<td>N.S.</td>
<td>2.1</td>
</tr>
<tr>
<td>DQ1</td>
<td>26</td>
<td>0.3</td>
<td>0.2</td>
<td>30</td>
<td>0.06</td>
<td>0.05</td>
<td>67.1</td>
<td>P>0.005</td>
<td>9.2</td>
</tr>
<tr>
<td>DQ2</td>
<td>12</td>
<td>0.1</td>
<td>0.2</td>
<td>10</td>
<td>0.02</td>
<td>0.1</td>
<td>49.9</td>
<td>P>0.005</td>
<td>10.1</td>
</tr>
<tr>
<td>DQ3</td>
<td>23</td>
<td>0.3</td>
<td>0.2</td>
<td>60</td>
<td>0.1</td>
<td>0.1</td>
<td>28.2</td>
<td>P>0.005</td>
<td>3.5</td>
</tr>
<tr>
<td>DQ4</td>
<td>4</td>
<td>0.05</td>
<td>0.05</td>
<td>90</td>
<td>0.1</td>
<td>0.1</td>
<td>6.8</td>
<td>P<0.005</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table 1- HLA phenotype and gene frequency in patients with acute lymphoblastic leukemia and controls showing Chi-square, P-values and odd ratios. (N.S. = not significant)
Table-2- the number and percentages of acute lymphoblastic leukemia patients with positive antibodies against HLA class I antigens.

<table>
<thead>
<tr>
<th>Cor. rol N°.</th>
<th>Patients with positive cross matches No. %</th>
<th>Patients with negative cross matches No. %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 14.2</td>
<td>60 85.7</td>
</tr>
</tbody>
</table>

Table -3- the number and percentages of acute lymphoblastic leukemia with different blood groups compared with healthy normal control group.

<table>
<thead>
<tr>
<th>Blood groups</th>
<th>Patients No. %</th>
<th>Control No. %</th>
<th>Chi square</th>
<th>P - values</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>28 40</td>
<td>195 39</td>
<td>0.001</td>
<td>N.S.</td>
</tr>
<tr>
<td>A</td>
<td>19 27.1</td>
<td>145 29</td>
<td>0.1</td>
<td>N.S.</td>
</tr>
<tr>
<td>B</td>
<td>17 24.2</td>
<td>135 27</td>
<td>0.07</td>
<td>N.S.</td>
</tr>
<tr>
<td>AB</td>
<td>6 8.5</td>
<td>25 5</td>
<td>1.7</td>
<td>N.S.</td>
</tr>
</tbody>
</table>

N.S. = not significant