HLA Profile in Iraqi Rheumatic Valvulitis Patients

Ahmed A.A. Al-Hassan*MSc. Mohammed Al-Faham**Ph.D Sana'a Al-Naseri*** Ph.D Emad Al-Mashat****FRCS Qassim Al-Douri****MD Ameera J. Al-Nnema*****MSc. Salwa M.Shereef******BSc.

Summary:

	Background: Human leukocyte antigen (HLA) is the most polymorphic genetic system in man. The
	genes of this region influence susceptibility to certain disease.
	Objectives : This study was established to shed light on the possible association of HLA class I and II antigens with RV patients.
	0 1
	Patients and Methods: Lymphocytotoxicity assay for HLA for class I and II typing had been done
J Fac Med Baghdad	for (100) Iraqi patients suffering from rheumatic valvulitis (RV), the control groups consisting of (75
2007; Vol. 49, No.2	healthy individuals and 35 non rheumatic heart disease (NRHD) patients).
Received Sep. 2006	Results: The results showed a significant association of A33-Ags with these patients as compared
Accepted March 2007	with healthy and cardiac controls ($P=0.005$), ($P=0.033$) respectively. Another interesting finding
1	was the low frequency of A1 in RV patients when compared with healthy control $(p=0.002)$,
	suggesting that A1 allele may confer protective effect against this disease. In addition significant
	association between blood group B and RV was evident ($p=0.04$). An interesting observation was a
	strong association of blood group B and A33 among those patients ($P < 0.001$).
	Conclusion: The present results are consistent with hypothesis that susceptibility to RV is
	genetically linked and in turn may be associated mainly with A33 in Iraqi patients.
	Key words: HLA, rheumatic valvulitis

Introduction:

HLA system is used to study the immunogenic basis of some diseases with known or suspected hereditary factors and / or with a possible immunological basis (1). Extensive information links certain HLA alleles and susceptibility to certain diseases. Among which are some autoimmune disease, viral disease, disorder of complement system and several different allergic conditions (2).

Rheumatic fever is a delayed sequal to group A streptococcal pharyngitis, of an autoimmune origin. The medical importance of rheumatic fever is serious cardiac involvement with valvulitis (rheumatic valvulitis) which may lead to death or valve replacement (3). Acquired mitral valve stenosis (MS) is virtually synonymous with RHD, it is a life long and sometimes progressive disease (4). Approximately 35% of patients with rheumatic fever will develop RHD later in life (5). The severity of RHD is generally proportional to the severity of acute carditis. An increased or decreased incidence of certain HLA alloantigens has been reported with RHD by some investigators (6,7). The aim of the work is to study the association of HLA and RV in Iraqi patients.

Subjects and Methods:

Patients:

Patients with RV (one hundred cases) had been studied over ten months period from march 2002 till December of the same year, their age was range from 18-64 years. Females constitute sixty six while the number of males were thirty four.Diagnosis was made by specialized cardiologist in the Ibn Al-Betar heart hospital. **Controls:**

1 - Healthy controls: Blood samples had been drawn from 75 healthy individuals who are age, gender and ethnic matched with patients.

2 - Patients with heart diseases other than rheumatic were choosen as a second control(35 patients). It included cases with congenital heart abnormality and degenerative cardiac diseases.

Methods:

HLA typing:

10 ml of venous blood had been drawn from patients and controls, typing for HLA class I and II (HLA-A, B,C, DR and DQ antigens) was carried out in the teaching laboratories of Medical City. The microlymphocytotoxicity test which had been established by (Terasaki and McClelland, 1964) (8)

^{*} Immunology , AL-Mussyaib Technical college.

^{**} Microbiology, Medical College / University of Baghdad
*** Immunopathology / Medical College / University of Baghdad.

^{*****}Department of Surgery/ Medical College / University of Baghdad.

^{*****}Consultant cardioliologist/ Ibn Al-Betar Heart Hospital. ******Medico – Legal Institute.

^{*******} Tissue Typing Center in AL-Karamah Teaching Hospital.

and modified by (Dick and Kissmeyer, 1979)(1) and (Bender, 1984)(9) was followed.

Statistical Analysis:

Univariate analysis has been applied for the data depending on logistic regression and the results were reported as odds ratio (OR), which represented the increased or decreased risk for RV. An estimate was considered statistically significant if P value was less than an α level of significance of 0.05.

Results:

The frequency distribution of various class I and II of HLA-Ags for study groups was presented in tables (1,2). A significant association was found between RV patients and A33, the frequency distribution was 27% in patients versus 9.3% in healthy control, OR = 3.6, p = 0.005, EF = 0.195 (Table 1). In the second control (non rhaumatic

heart disease) frequency distribution was equal to 8.6%, OR= 3.9, p= 0.033, EF= 0.202 (Table 2).

Appreciable decrease in the antigen frequency of A1 was noticed in RV patients 6% as compared with control (healthy individuals) 22.7%, inverse OR= 4.6, p=0.002, PF= 0.177 (Table 1). While the frequency was 14.3% in the 2nd control (NRHD) which is not significant when compared with the RV patients, inverse OR= 2.6, p= NS, PF= 0.088 (Table 2). Results were tabulated in relation to studies from other countries. Table 3 shows literature data about the association of HLA phenotype with RF & RHD in different ethnic groups. The results of the ABO blood groups in RV patients were shown in table (4). There was significant increase in the blood group B frequency (P= 0.04) of the RV patients as compared with controls. The blood group B antigens showed a strong association among RV patients with A33-Ag (p < 0.001) table (5).

Table 1: Antigens frequency	of the HLA- class I & II of the	RV patients and the healthy controls.
Tuble It findgens hequency		it puttents and the nearing controls.

	Healthy controls No.(%)	RV cases No.(%)	OR	Inverse OR	P	EF	PF
HLA -A							
1	17(22.7)	6(6.0)	0.2	4.6	0.002	**	0.177
2	28(37.3)	35(35.0)	0.9	1.1	NS	**	0.036
3	14(18.7)	18(18.0)	1.0	1.0	NS	**	0.008
9	3(4.0)	6(6.0)	1.5	**	NS	0.021	**
10	1(1.3)	3(3.0)	2.3	**	NS	0.017	**
11	9(12.0)	18(18.0)	1.6	**	NS	0.068	**
23	3(4.0)	3(3.0)	0.7	1.3	NS	**	0.010
24	13(17.3)	12(12.0)	0.7	1.5	NS	**	0.06
25	1(1.3)	3(3.0)	2.3	**	NS	0.017	**
26	7(9.3)	15(15.0)	1.7	**	NS	0.063	**
28	9(12.0)	18(18.0)	1.6	**	NS	0.068	**
29	3(4.0)	1(1.0)	0.2	4.1	NS	**	0.030
30	12(16.0)	15(15.0)	0.9	1.1	NS	**	0.012
31	2(2.7)	0(0.0)	0.1	6.8	NS	**	**
32	2(2.7)	0(0.0)	0.1	6.8	NS	**	**
33	7(9.3)	27(27.0)	3.6	**	0.005	0.195	**
34	1(1.3)	3(3.0)	2.3	**	NS	0.017	**
36	1(1.3)	0(0.0)	0.2	4.0	NS	**	**
Blank	17(22.7)	17(17.0)					**
total	150(100)	200(100)					
HLA-B		()					
5	3(4.0)	6(6.0)	1.5	**	NS	0.021	**
7	8(10.7)	6(6.0)	0.5	1.9	NS	**	0.050
8	8(10.7)	18(18.0)	1.8	**	NS	0.082	**
12	0(0.0)	3(3.0)	5.4	**	NS	0.024	**
13	5(6.7)	9(9.0)	1.4	**	NS	0.025	**
14	4(5.3)	9(9.0)	1.8	**	NS	0.039	**
15	1(1.3)	0(0.0)	0.2	4.0	NS	**	**
17	5(6.7)	6(6.0)	0.9	1.1	NS	**	0.007
18	3(4)	3(3)	0.7	1.3	NS	**	**
21	1(1.3)	0(0.0)	0.2	4.0	NS	**	**
22	0(0.0)	4(4.0)	7.0	**	NS	0.034	**
27	3(4.0)	3(3.0)	0.7	1.3	NS	**	0.010
35	13(17.3)	12(12.0)	0.7	1.5	NS	**	0.061
37	3(4.0)	8(8.0)	2.1	**	NS	0.042	**
38	5(6.7)	6(6.0)	0.9	1.1	NS	**	0.007

Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com

39	1(1.3)	3(3.0)	2.3	**	NS	0.017	**
<u> </u>	2(2.7)	0(0.0)	0.1	6.8	NS	**	**
40	9(12.0)	6(6.0)	0.1	2.1	NS	**	0.064
44	6(8.0)	3(3.0)	0.3	2.3	NS	**	0.038
45	1(1.3)	3(3.0)	2.3	**	NS	0.017	**
47	1(1.3)	$\theta(0.0)$	0.2	4.0	NS	**	**
49	6(8.0)	9(9.0)	1.1	**	NS	0.011	**
50	9(12.0)	15(15.0)	1.3	**	NS	0.034	**
50	14(18.7)	9(9.0)	0.4	2.3	NS	**	0.106
52	3(4.0)	3(3)	0.7	1.3	NS	**	**
53	3(4.0)	3(3.0)	0.7	1.3	NS	**	0.010
<u> </u>	0(0.0)	3(3.0)	5.4	**	NS	0.024	**
55	1(1.3)	0(0.0)	0.2	4.0	NS	**	**
56	1(1.3)	0(0.0)	0.2	4.0	NS	**	**
57	1(1.3)	6(6.0)	4.7	**	NS	0.047	**
60	0(0.0)	3(3.0)	5.4	**	NS	0.024	**
62	1(1.3)	3(3.0)	2.3	**	NS	0.017	**
63	1(1.3)	0(0.0)	0.2	4.0	NS	**	**
70	1(1.3)	0(0.0)	0.2	4.0	NS	**	**
73	0(0.0)	3(3.0)	5.4	**	NS	0.024	**
Blank	27(36)	35(35)			110	0.027	
Total	150(100)	200(100)	-				1
HLA-C		(100)	-				1
1	2(2.7)	3(3.0)	1.1	**	NS	0.003	**
				**			**
2	5(6.7)	12(12.0)	1.9	**	NS	0.057	**
3	4(5.3)	6(6.0)	1.1		NS	0.007 **	
4	18(24.0)	20(20.0)	0.8	1.3	NS		0.050
5	2(2.7)	3(3.0)	1.1	**	NS	0.003 **	**
6	9(12.0)	12(12.0)	1.0		NS	**	
7	14(18.7)	14(14.0)	0.7	1.4	NS		0.054
8	1(1.3)	3(3.0)	2.3	**	NS	0.017	**
Blank	<i>95(126.7)</i>	127(127.0)					
total	150(100)	200(100)					
HLA- DR		5(5.0)			110	-11-	0.070
1	8(10.7)	5(5.0)	0.4	2.3	NS	**	0.060
2	18(24.0)	21(21.0)	0.8	1.2	NS	**	0.038
3	17(22.7)	<i>19(19.0)</i>	0.8	1.2	NS	**	0.045
4	16(21.3)	20(20.0)	0.9	1.1	NS	**	0.017 **
5	3(4.0)	4(4.0)	1.0		NS		
6	5(6.7)	3(3.0)	0.4	2.3	NS	**	0.038
7	16(21.3)	30(30.0)	1.6	**	NS	0.110 **	**
8	10(13.3)	<i>9(9.0)</i>	0.6	1.6 **	NS		0.048
9	6(8.0) 8(10.7)	9(9.0)	1.1	**	NS	0.011	**
10	8(10.7)	15(15.0)	1.5	**	NS	0.049	**
11	6(8.0) 2(4.0)	18(18.0)	2.5	**	NS	0.109	**
12	3(4.0)	6(6.0)	1.5		NS	0.021 **	_
13	7(9.3)	9(9.0)	1.0	1.0	NS		0.004
14	3(4.0)	6(6.0)	1.5	**	NS	0.021	**
15	12(16.0)	12(12.0)	0.7	1.4	NS	**	0.045
52	3(4.0)	8(8.0)	2.1	**	NS	0.042	**
53	3(4.0)	6(6.0)	1.5	**	NS	0.021	**
Blank	6(8.0)	0(0.0)		-	-		
total	150(100)	200(100)		-	-		
HLA- DQ	25/26 0		1.0	ste ste	NG	ste ste	ste ste
1	27(36.0)	36(36.0)	1.0	**	NS	**	**
2	20(26.7)	36(36.0)	1.5	**	NS	0.127	**
3	25(33.3)	25(25.0)	0.7	1.5	NS	**	0.111
4	16(21.3)	18(18.0)	0.8	1.2	NS	**	0.041
Blank	62(82.7)	85(85.0)		-	-		
total	150(100)	200(100)					1

**=Nill

NS= Non significant

HLA antigen	Cardiac controls No.(%)	RV cases No.(%)	OR	Inverse OR	Р	EF	PF
HLA-A			0.4	26	NC	**	0.000
<u>1</u> 2	5(14.3)	<u>6(6.0)</u> 25(25.0)	0.4	2.6	NS		0.088
<u>2</u> 3	9(25.7)	35(35.0)	1.6	**	NS	0.125	**
	4(11.4)	18(18.0)	1.7		NS	0.074	
9	3(8.6)	6(6.0)	0.7	1.5	NS	**	0.027
10	2(5.7)	3(3.0)	0.5	2.0	NS		0.028
<u>11</u>	6(17.1)	18(18.0)	1.1		NS	0.010	
23	3(8.6)	3(3.0)	0.3	3.0	NS		0.057 **
24	4(11.4)	12(12.0)	1.1	**	NS	0.006	**
25	1(2.9)	3(3.0)	1.1	**	NS	0.001	**
26	5(14.3)	15(15.0)	1.1	**	NS	0.008	**
28	6(17.1)	18(18.0)	1.1	_	NS	0.010	
<u>29</u>	1(2.9)	1(1.0)	0.3	2.9 **	NS		0.019
30	4(11.4)	15(15.0)	1.4		NS	0.040	
31	2(5.7)	0(0.0)	0.1	15.0	NS	**	**
32	1(2.9)	0(0.0)	0.1	8.7	NS	**	**
33	3(8.6)	27(27.0)	3.9	**	0.033	0.202	**
34	1(2.9)	3(3.0)	1.1	**	NS	0.001	**
36	0(0.0)	0(0.0)	0.4	2.8	NS	**	**
Blank	10(28.6)	17(17.0)					
total	70(100)	200(100)					
HLA-B							
5	1(2.9)	6(6.0)	2.2	**	NS	0.032	**
7	3(8.6)	6(6.0)	0.7	1.5	NS	**	0.027
8	6(17.1)	18(18.0)	1.1	**	NS	0.010	**
12	3(8.6)	3(3.0)	0.3	3.0	NS	**	0.057
13	1(2.9)	9(9.0)	3.4	**	NS	0.063	**
14	4(11.4)	9(9.0)	0.8	1.3	NS	**	0.027
15	2(5.7)	0(0.0)	0.1	15.0	NS	**	**
17	0(0.0)	6(6.0)	<i>4.9</i>	**	NS	0.048	**
18	0(0.0)	3(3.0)	2.5	**	NS	0.018	**
21	2(5.7)	0(0.0)	0.1	15.0	NS	**	**
22	0(0.0)	<i>4</i> (<i>4</i> . <i>0</i>)	3.3	**	NS	0.028	**
27	3(8.6)	3(3.0)	0.3	3.0	NS	**	0.057
35	3(8.6)	12(12.0)	1.5	**	NS	0.038	**
37	1(2.9)	8(8.0)	3.0	**	NS	0.053	**
38	0(0.0)	6(6.0)	4.9	**	NS	0.048	**
39	0(0.0)	3(3.0)	2.5	**	NS	0.018	**
40	2(5.7)	0(0.0)	0.1	15.0	NS	**	**
41	3(8.6)	6(6.0)	0.7	1.5	NS	**	0.027
44	4(11.4)	3(3.0)	0.2	4.2	NS	**	0.087
45	2(5.7)	3(3.0)	0.5	2.0	NS	**	0.028
47		$\frac{\partial(0.0)}{\partial(0.0)}$	0.4	2.8	NS	**	**
49	1(2.9)	9(9.0)	3.4	**	NS	0.063	**
50	3(8.6)	15(15.0)	1.9	**	NS	0.070	**
51	4(11.4)	9(9.0)	0.8	1.3	NS	**	0.027
52		3(3.0)	2.5	**	NS	0.018	**
53	0(0.0)	3(3.0)	2.5	**	NS	0.018	**
55		3(3.0)	2.5	**	NS	0.018	**
						**	**
55	2(5.7)		0.1	15.0	NS	**	**
56	0(0.0)	0(0.0)	0.4	2.8	NS		**
57	2(5.7)	6(6.0)	1.1		NS	0.003	
60	2(5.7)	3(3.0)	0.5	2.0	NS	**	0.028
62	1(2.9)	3(3.0)	1.1	**	NS	0.001	**
63	0(0.0)	0(0.0)	0.4	2.8	NS	**	**
70	$\theta(0.0)$	0(0.0)	0.4	2.8	NS	**	**
73	0(0.0)	3(3.0)	2.5	**	NS	0.018	**

Table 2: Antigen frequency of the HLA-class I & II of the RV patients and the cardiac control(Non RHD).

Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com

total	70(100)	200(100)					
HLA-C							
1	2(5.7)	3(3.0)	0.5	2.0	NS	**	0.028
2	3(8.6)	12(12.0)	1.5	**	NS	0.038	**
3	3(8.6)	6(6.0)	0.7	1.5	NS	**	0.027
4	9(25.7)	20(20.0)	0.7	1.4	NS	**	0.071
5	2(5.7)	3(3.0)	0.5	2.0	NS	**	0.028
6	6(17.1)	12(12.0)	0.7	1.5	NS	**	0.058
7	8(22.9)	14(14.0)	0.5	1.8	NS	**	0.103
8	2(5.7)	3(3.0)	0.5	2.0	NS	**	0.028
Blank	35(100.0)	127(127.0)					
total	70(100)	200(100)					
HLA-DR							
1	<i>4</i> (<i>11.4</i>)	5(5.0)	0.4	2.3	NS	**	0.048
2	6(17.1)	21(21.0)	1.3	**	NS	0.047	**
3	6(17.1)	<i>19(19.0)</i>	1.1	**	NS	0.022	**
4	6(17.1)	20(20.0)	1.2	**	NS	0.034	**
5	3(8.6)	<i>4</i> (<i>4</i> . <i>0</i>)	0.4	2.3	NS	**	0.048
6	1(2.9)	3(30)	1.1	**	NS	0.001	**
7	6(17.1)	30(30)	2.1	**	NS	0.155	**
8	2(5.7)	9(9.0)	1.6	**	NS	0.035	**
9	1(2.9)	9(9.0)	3.4	**	NS	0.063	**
10	2(5.7)	15(15.0)	2.9	**	NS	0.098	**
11	4(11.4)	18(18.0)	1.7	**	NS	0.074	**
12	3(8.6)	6(6.0)	0.7	1.5	NS	**	0.027
13	1(2.9)	9(9.0)	3.4	**	NS	0.063	**
14	1(2.9)	6(6.0)	2.2	**	NS	0.032	**
15	9(25.7)	12(12.0)	0.3	3.4	NS	**	0.221
52	1(2.9)	8(8.0)	3.0	**	NS	0.053	**
53	1(2.9)	6(6.0)	2.2	**	NS	0.032	**
Blank	13(37.1)	0(0.0)					
total	70(100)	200(100)					
HLA-DQ							
1	14(40.0)	36(36.0)	0.8	1.2	NS	**	0.063
2	9(25.7)	36(36.0)	1.6	**	NS	0.138	**
3	10(28.6)	25(25.0)	0.8	1.2	NS	**	0.048
4	7(20.0)	18(18.0)	0.9	1.1	NS	**	0.024
Blank	30(85.7)	85(85.0)					
Total	70(100)	200(100)					

**= Nill NS= Non significant

Table 3 : Literature data shows the association of HLA phenotype of RF and RHD in different ethnic groups

Publication		Decreased	Increased frequency	Country
		frequency		
Ayoub e al., 1986(6)			DR2,DR4	U.S.A
Cauphey et al., 1975(7)		A10	A3,B8	Maoris
		A28	B17	Europeans
Jhinphan et al., 1986(10)		DR2	DR3,A33	North Indian
Leirisalo et al., 1977(11)			B35	Finnish
Goriaeva	and		A11,B27,Cw2,Cw3,DR5,DR7	USSR
Benevolenskaia, 1986 (12)				
Guedez, 1999 (13)			DR6, DR7, DQ2	Egypt
Donadi et al., 2000 (14)			B4,DR1	Brazil
Olmez et al.,1992(16)		A10,B35	DR11(with carditis)	Turkey
Present Study		A1	A33	Iraq

	Study groups							
	Healthy controls No.(%)	Non RHD controls No.(%)	Rheumatic Valvulitis cases No.(%)	P value				
Blood groups A	27(36)	19(54.3)	33(33)	NS				
В	16(21.3)	5(14.3)	36(36)	0.04				
AB	13(17.3)	2(5.7)	9(9)	NS				
0	19(25.3)	9(25.7)	22(22)	NS				
Total	75 (100)	35 (100)	100(100)					

 Table 4: Status of ABO blood groups in RV patients as compared to controls.

Table 5 : Association of HLA-A33 with blood groups antigens in RV	⁷ patients as compared to controls.
Tuble 6 Thissociation of The Tibe with blood groups antigens in it	putients us compared to controls.

	Total		HLA-A	A33 antigen	Р
	No.	(%)	No	(%)	
Healthy controls					
Blood group					
Α	27	(36)	3	(11.1)	NS
В	16	(21.33)	1	(6.3)	NS
AB	13	(17.33)	2	(15.4)	NS
0	19	(25.33)	1	(5.3)	NS
Total	75		7		
Cardiac controls(non RHD)					
Blood group					NS
Α	19	(54.28)	1	(5.3)	
В	5	(14.28)	1	(20.0)	NS
AB	2	(5.71)	1	(50.0)	NS
0	9	(25.71)	0	(0.0)	NS
Ttotal	35		3		
Rheumatic Valvulitis cases					
Blood group					
Α	33	(33)	0	(0.0)	NS
В	36	(36)	24	(66.7)	<0.001
AB	9	(9)	0	(0.0)	NS
0	22	(22)	3	(13.6)	NS
Total	100		27		

Discussion:

The role of genetic factors in the etiology of rheumatic heart disease was documented many decades ago .As a result ,the investigative efforts were focused on the genetic markers of susceptibility to this preventable disease. These studies have been influenced by the accumulation of data about the importance of HLA in the immune response. In view of an abnormal auto immune response exhibited by the RF/RHD patients, the HLA region has been under scrutiny for markers of susceptibility.

In the present work, there was significant association of HLA-A33 with RV patients [P=(0.005),(0.033)] as compared with healthy and cardiac control respectively. This result in agreement with that of Jhinphan *et al.*,(1986)(10) regarding significant statistical results of A33 Ags

as compared with control group,but disagreed with result of the workers (11, 12, 13,14) table(3). In addition, the A1-Ag showed significant low frequency in RV patient when compared with healthy control (PF=0.177) and there was no significant differences as compared with cardiac control so, A1-Ag may has protective value, this finding was not consistant with that of Falk *et al.*, (1973)(15); Cauphey *et al.*, (1975)(7); and Olmez *et al.*, (1992)(16) about the type of protective Ag.

★ As shown in table (3) the frequency of class I and class II HLA-Ag showed conflicting results in patients with RHD by different authores. The reason for these discrepancies are probably related to:

* Although DR4 associated genetic predisposition has been suggested for RHD, other studies failed toconfirm this.The disparity may be due to antisera not being monospecific and thereby increasing the cross reactivity in the control group (17). (recently monoclonal Abs have been used which are more sensitive and more specific).

** Ethnic differences must also taken into account. The frequency of a particular allele in one population can be very different from that in another population. The reason of race variation is not clearly known. It may be due to gene drift or gene flow due to admixture between different populations (18).

*** Different rheumatogenic strain of streptococcus pyogenes in different countries may be explain the differences in type of specific HLA-Ag which associated with RV patients in different nations. i.e the molecular mimicry between specific HLA-Ag with certain rheumatogenic strain predispose to occurrence of autoimmunity in predisposing individual, so identification of rheumatogenic strain of streptococcus is important to have an idea about susceptibility to RV.

Significant increase in the frequency of blood group B in RV patients as compared to control groups (P=0.04) was showed in the current work. Also Ali, (1989)(19) found significant increase in the frequency of blood group B in Iraqi patients with RHD. Aswellas, an interesting observation was a strong association of blood group B with A33-Ag among RV patients (P<0.001).Such association have proved the utility of HLA and blood group antigens as useful tool in understanding the susceptibility and pre-disposition of individuals to RHD. This phenomena, may indicate the presence of at least one important genetic factor for susceptibility to RV disease.

<u>References:</u>

1. Dick H and kissmeyer-Nielsen F. Histocompatibility techniques. North-Holland. Biomedical press. Amsterdam. New York. Oxford 1979. pp. 1-37.

2. Goldsby RA, Kindt TJ, Osborne BA. Immunology, 24th Ed.W.H. Freeman and company ,New York , U.S.A.2000. PP .173 - 99.

3. Cunningham MW. Pathogenesis of group A Streptococcal infections. Clinical Microbiology Reviews 2000. 13(3): 470-511.

4. Bruce C, Nishimura R. Clinical assessment and management of mitral stenosis. Cardiol. Clin 1998.16(3): 375-403.

5. Gostman M. RF and RHD. Med. Internat 1985. 2: 18, 765-769

6. Ayoub EM, Barrett DJ, Maclaren NK, Krischer JP. Association of class II human histocompatibility leukocyte antigens with rheumatic fever. J. Clin. Investg 1986. 77: 2019-2026.

7. Cauphey DE, Douglas D, Wilson W, Hassal B. HLA antigens in Europeans and Maoris with RF and RHD. J. Rheumatol 1975. 2: 319-22.

8. Terasaki P, McClelland J. Microdroplet assay of human serum cytotoxins. Nature 1964. 204: pp. 998-1000.

9. Bender K. The HLA system, 2th ed. Biotest Bulletin 1984. 2(2):64-116.

10. Jhinphan B, Mehra NK, Reddy KS, Taneja V, Vaidya MC, Bhatia ML. HLA, blood groups and secretor status in patients with established RF and RHD. Tissue Antigens 1986. 27:172-8.

11. Leirisalo M, Lartinen O, Tülikainen A. HLA phenotypes in patient with RF, RHD and yersenia arthritis J. Rheumatol 1977. 4(suppl.3): 78-82.

12. Goriaeva I, Benevolenskaia L. Study of the association of histocompatibility antigens with heumatism. Ter-Arkh 1986. 58(10): 78-81.

13. Guedez Y, Kotby A, EL-Demellawy M, Galal A, Thomson G, Zaher S, Kassen S, Kott M. HLA class II associations with RHD are more evident and consistent among clinically homogenous patients. Circulation 1999.99:2784-2790.

14. Donadi EA, Smith A G, Louzad JP. HLA classI and class II profiles of patients presenting with sydenham's chorea. J. Neurol. Feb 2000. 247 (2): 122-8.

15. Falk JA, Fleishman JL, Brinskie J, Falk R. A study of HLA antigen phenotypes in RF and RHD. Tissue Antigens 1973. 3: 173-8.

16. Olmez U, Turgay M Ozenirler S, Tutkak H, Duzgun N, Duman M, Tokgoz G. Association of HLA class I and class II antigens with RF in a Turkish population. Scand. J. Rheumatol 1992.22: 49-52.

17. Rajapakse C, Al Balla S, AlDallan A, Kamal H. Streptococcal antibody cross reactivity with HLA-DR-Ve Blymphocytes. Basis of the DR4 associated genetic predisposition to rheumatic fever and RHD?. British Journal, Rheumatology 1990. 29: 468-470.

18. Nei M, Li WH. Linkage disequilibrium in subdivided population. Genetic 1973. 75: 213-219.

19. Ali FK. Clinical and immunological study in RF and RHD. MSc. Thesis, college of medicine, university of Baghdad 1989.